Pregunta
upstudy study bank question image url

6. For each equation, determine whether it has no solutions, one solution, or infinite solutions. If it has one solution, solve to find the value of \( x \) that makes the statement true. Show/explain your reasoning \( \begin{array}{ll}\text { a. } x-4(3-2 x)=3(3 x+4) & \text { b. } x-4(3+2 x)=3(3 x+4) \\ \text { c. } x-4(3-2 x)=3(3 x-4) & \end{array} \)

Ask by Hamilton Vaughan. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **a.** No solutions - **b.** \( x = -\frac{3}{2} \) - **c.** Infinite solutions

Solución

To determine whether each equation has no solutions, one solution, or infinite solutions, we will solve each equation step by step. ### a. \( x - 4(3 - 2x) = 3(3x + 4) \) 1. **Distribute** on both sides: \[ x - 12 + 8x = 9x + 12 \] This simplifies to: \[ 9x - 12 = 9x + 12 \] 2. **Rearranging** the equation: \[ 9x - 9x - 12 = 12 \] This simplifies to: \[ -12 = 12 \] Since this statement is false, the equation has **no solutions**. ### b. \( x - 4(3 + 2x) = 3(3x + 4) \) 1. **Distribute** on both sides: \[ x - 12 - 8x = 9x + 12 \] This simplifies to: \[ -7x - 12 = 9x + 12 \] 2. **Rearranging** the equation: \[ -7x - 9x = 12 + 12 \] This simplifies to: \[ -16x = 24 \] 3. **Solving for \( x \)**: \[ x = -\frac{24}{16} = -\frac{3}{2} \] Thus, this equation has **one solution**, \( x = -\frac{3}{2} \). ### c. \( x - 4(3 - 2x) = 3(3x - 4) \) 1. **Distribute** on both sides: \[ x - 12 + 8x = 9x - 12 \] This simplifies to: \[ 9x - 12 = 9x - 12 \] 2. **Rearranging** the equation: \[ 9x - 9x - 12 = -12 \] This simplifies to: \[ -12 = -12 \] Since this statement is always true, the equation has **infinite solutions**. ### Summary of Results: - **a.** No solutions - **b.** One solution: \( x = -\frac{3}{2} \) - **c.** Infinite solutions

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Alright, let's break down these equations one by one and see what we discover! **a.** Start with the equation: \( x - 4(3 - 2x) = 3(3x + 4) \) Distributing on both sides gives: \( x - 12 + 8x = 9x + 12 \) Combine like terms: \( 9x - 12 = 9x + 12 \) Subtract \( 9x \) from both sides: \( -12 = 12 \) This is a contradiction, which means the equation has **no solutions**. **b.** Now for the second equation: \( x - 4(3 + 2x) = 3(3x + 4) \) Distributing gives: \( x - 12 - 8x = 9x + 12 \) Combine like terms: \( -7x - 12 = 9x + 12 \) Rearranging yields: \( -7x - 9x = 12 + 12 \) Thus, \( -16x = 24 \), so dividing both sides by -16 gives: \( x = -\frac{3}{2} \). There is **one solution**: \( x = -\frac{3}{2} \). **c.** Finally, for the last equation: \( x - 4(3 - 2x) = 3(3x - 4) \) Distributing gives: \( x - 12 + 8x = 9x - 12 \) Combine like terms: \( 9x - 12 = 9x - 12 \) This is an identity, meaning it holds true for all values of \( x \), so there are **infinite solutions**. In summary: - a: No solutions - b: One solution, \( x = -\frac{3}{2} \) - c: Infinite solutions Equations can really put on a show! Always remember to keep an eye out for contradictions or identities that reveal their secrets. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad