Pregunta
upstudy study bank question image url

Kilimani Company Limited owns and sells houses around Nyashishi area in Mwanza. Assume further that the city council has built a new garbage collection area in Nyashishi. The following equation relates housing prices (price) to distance from the recently built garbage collection point (dist). \[ \log (\text { price })=9.40+0.312 \log \text { (dist) } \] \[ n=135, R^{2}=0.162 \] a) Interpret the coefficient on \( \log ( \) dist). Is the sign of this estimate what you expect it to be? ( 7.5 marks) b) What other factors about a house affect its price? ( 7.5 marks) c) How much variation in the dependent variable price is explained by the independent variable distance? (Hint: utilize the \( R \)-squared.) ( 7.5 marks)

Ask by King Sanders. in Tanzania
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The coefficient of 0.312 means that for every 1% increase in distance from the garbage collection area, the house price increases by approximately 0.312%. This is expected because houses farther away from a nuisance are generally more expensive. b) Other factors affecting house prices include the size of the house, number of rooms, age and condition, location (proximity to amenities), neighborhood quality, architectural style, and market conditions. c) The R² value of 0.162 indicates that about 16.2% of the variation in house prices is explained by the distance from the garbage collection area.

Solución

Below is a detailed explanation of each part. ────────────────────────────── a) Interpreting the Coefficient on log(dist) The regression equation is given as:   log(price) = 9.40 + 0.312 log(dist) Here, the coefficient on log(dist) is 0.312. Because both the dependent and independent variables are in logarithms, this coefficient tells us the elasticity of house prices with respect to distance from the garbage collection area. In other words, a 1% increase in distance from the garbage collection point is associated with an average increase in house price of about 0.312%. Is the sign as expected? Yes. Since the garbage collection area is likely seen as a nuisance, houses closer to it might be less desirable (and hence less expensive). The positive coefficient indicates that as the distance increases (i.e., the house is farther away from the garbage collection point), the house price tends to be higher, which is what we would anticipate. ────────────────────────────── b) Other Factors that Might Affect House Prices House prices are influenced by a variety of factors other than just the distance from undesirable amenities. Some of these factors include: • Size or Square Footage – Larger houses or lots generally command higher prices. • Number of Bedrooms and Bathrooms – More rooms typically increase the value. • Age and Condition – Newer or well-maintained houses tend to be priced higher. • Location – Proximity to good schools, shopping centers, transportation, parks, and other neighborhood amenities. • Neighborhood Quality – Includes factors like safety, public services, and overall desirability. • Architectural Style and Interior Quality – Unique designs or high-quality finishes may increase prices. • Market Conditions – Broader economic factors and supply and demand in the housing market. • Environmental Factors – Aside from the garbage collection point, factors such as noise, pollution, and scenic quality can also play a role. ────────────────────────────── c) Variation in Price Explained by Distance The R² value provided is 0.162. In the context of a regression, R² measures the proportion of the variation in the dependent variable that is explained by the independent variable(s) in the model. Since R² = 0.162, this means that approximately 16.2% of the variation in log(price) is explained by log(dist). In other words, when we use the distance from the garbage collection area to predict the house price, we are accounting for 16.2% of the variability in house prices. The remaining 83.8% of the variation is explained by other factors not included in this simple regression model. ────────────────────────────── Summary Answer a) The coefficient of 0.312 means that a 1% increase in the distance from the garbage collection point is associated with a 0.312% increase in the price of a house. This positive sign is as expected since being further away from a potentially undesirable garbage collection area should make a house more attractive and hence more expensive. b) Other factors affecting house prices could include the size of the house, number of rooms, age, condition, location (access to amenities, schools, and employment centers), architectural style, neighborhood characteristics, market conditions, and environmental quality, among others. c) With an R² of 0.162, about 16.2% of the variation in the (log of) house prices is explained by the (log of) distance from the garbage collection area.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The coefficient on \( \log(\text{dist}) \) is 0.312, indicating that an increase in the distance from the garbage collection point is associated with a percentage increase in housing prices, since we’re observing a log-log relationship. Specifically, a 1% increase in distance is expected to lead to approximately a 0.312% increase in the house price. The positive sign here might be unexpected; typically, one would expect proximity to undesirable features, like a garbage collection area, to decrease house prices. In addition to distance from the garbage collection point, several other factors can influence housing prices. These include the size of the house (in square feet), the number of bedrooms and bathrooms, the condition and age of the property, neighborhood safety, local school quality, and nearby amenities such as parks or shopping centers. Each of these aspects can significantly impact how buyers perceive value and set their willingness to pay. The \( R^{2} \) value of 0.162 suggests that approximately 16.2% of the variation in the housing price can be explained by the distance from the garbage collection point. This implies that while distance is a relevant factor, there are many other elements contributing to housing price fluctuations that are not captured by this model. Thus, the model may need to be expanded to include more predictors for a more comprehensive understanding of pricing dynamics.

preguntas relacionadas

C \$AP \( \begin{array}{l}\text { Para ilustrar la manera en que podemos modelar situaciones a través del uso de } \\ \text { las matemáticas, suponga el siguiente caso: }\end{array} \) Juan es ebanista y cuenta con un pequeño taller en el cual se dedica a la elaboración de mesas y sillas, las sillas se venden a 120 unidades monetarias (um/u) y las mesas a 150. Suponga por favor que en el taller de ebanistería se utiliza un solo tipo de madera para la elaboración de las mesas y sillas, y que esta madera se compra en unidades de medida de metros cuadrados (m2/u). Debido a su experiencia y los datos que ha venido registrando en su cuaderno de contabilidad, Juan conoce que para elaborar una silla se utilizan 0,7 metros cuadrados de madera y para elaborar una mesa se utilizan 1,4. Juan ha realizado cálculos previos y conoce que el costo de la mano de obra para producir una silla es de 50 unidades monetarias, y una mesa 60. Para la producción mensual de sillas y mesas, el taller dispone de 100 metros cuadrados de madera y 500 unidades monetarias para cubrir los costos de mano de obra. Ahora bien, dado que los recursos con los que se cuenta en la Ebanistería. Juan desea conocer cuál es la combinación de la cantidad de sillas (u) y mesas lu) que debe producir para maximizar sus ingresos en el mes ltenga en cuenta que la función de ingresos está dada por la cantidad de sillas y mesas que se produzcan multiplicadapor los precios de venta de cada productol.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad