Pregunta
upstudy study bank question image url

Factur the polynomial and use the factored form to find the zerus. [Enter your answers as a corna-segarated list, Entar all answers using the apgropriate multiplicities.) \[ P(x)=x^{3}+2 x^{2}-4 x-8 \] Sketch the graph.

Ask by Lynch Estrada. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Zeros: 2, –2, –2

Solución

We start with the polynomial   P(x) = x³ + 2x² – 4x – 8. Step 1. Find a root by testing possible candidates. Trying x = 2 gives:   P(2) = 2³ + 2·2² – 4·2 – 8 = 8 + 8 – 8 – 8 = 0. Since x = 2 is a zero, (x – 2) is a factor. Step 2. Divide P(x) by (x – 2) to find the remaining quadratic factor. Using synthetic division with 2:   Coefficients: 1  2  –4  –8   Bring down the 1.   Multiply:   1×2 = 2; add to 2 to get 4.   Multiply:   4×2 = 8; add to –4 to get 4.   Multiply:   4×2 = 8; add to –8 to get 0. So the quotient is x² + 4x + 4. Step 3. Factor the quadratic:   x² + 4x + 4 = (x + 2)². Thus the completely factored form of P(x) is:   P(x) = (x – 2)(x + 2)². Step 4. Identify the zeros from the factors:   • From (x – 2) = 0, we get x = 2 (simple zero).   • From (x + 2)² = 0, we get x = –2 with multiplicity 2. Enter these as a comma-separated list with multiplicities:   2, –2, –2 Sketching the Graph: • x-intercepts: The graph crosses or touches the x-axis at x = 2 and x = –2. Notice that at x = –2 (a double zero) the graph will "touch" the axis and turn around rather than crossing it. • End Behavior: Since P(x) is a cubic polynomial with positive leading coefficient:   – as x → –∞, P(x) → –∞.   – as x → ∞, P(x) → ∞. • y-intercept: Substitute x = 0:   P(0) = 0 + 0 – 0 – 8 = –8.   So the point (0, –8) is on the graph. • Additional features: The graph will have an inflection point typical of a cubic function and will flatten out at x = –2 (because of the double root). In summary:  Factored Form: P(x) = (x – 2)(x + 2)²  Zeros (with multiplicities): 2, –2, –2

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To factor the polynomial \( P(x) = x^3 + 2x^2 - 4x - 8 \), we can use synthetic division by testing possible rational roots. In this case, we find that \( x = -2 \) is a root. Using synthetic division on \( P(x) \), we obtain a quadratic \( x^2 + 2 \) that factors to \( (x + 2)(x^2 + 2) \) after the first division step. The roots of \( P(x) \) are then \( x = -2 \) (with multiplicity 1) and \( x^2 + 2 = 0 \), which gives complex roots \( x = i\sqrt{2} \) and \( x = -i\sqrt{2} \). Now, the factored form is: \[ P(x) = (x + 2)(x - i\sqrt{2})(x + i\sqrt{2}) \] For the zeros, we summarize them as: - \( x = -2 \) (multiplicity 1) - \( x = i\sqrt{2} \) (multiplicity 1) - \( x = -i\sqrt{2} \) (multiplicity 1) Using graphing tools, you can sketch the graph, which would show a real root at \( x = -2 \) crossing the x-axis and indicating that there are no other real x-intercepts due to the complex roots. The graph approaches infinity as \( x \) moves to positive or negative infinity. To ensure you’ve tackled polynomial problems effectively, remember to check for synthetic division accuracy and try out the Rational Root Theorem as a first step. Many students forget to check for all possible rational roots, so it’s essential to thoroughly test several values before concluding. Always verify your roots by substituting them back into the original polynomial!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad