Pregunta
upstudy study bank question image url

6. \( 2 x^{3}-x^{2}-162 x+81 \)

Ask by Johnston Thornton. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The polynomial \( 2x^{3} - x^{2} - 162x + 81 \) factors to \( (2x - 1)(x - 9)(x + 9) \). The roots are \( x = \frac{1}{2} \), \( x = 9 \), and \( x = -9 \).

Solución

To factor the cubic polynomial   2x³ – x² – 162x + 81 we can first try factoring by grouping. Step 1. Group the terms:   (2x³ – x²) + (–162x + 81) Step 2. Factor out the common factors in each group:   First group: Factor out x²:     x²(2x – 1)   Second group: Factor out –81:     –81(2x – 1) Step 3. Now, notice that both groups contain the common factor (2x – 1):   (2x – 1)[x² – 81] Step 4. Recognize that x² – 81 is a difference of two squares:   x² – 81 = (x – 9)(x + 9) Thus, the completely factored form is:   (2x – 1)(x – 9)(x + 9) If you need the roots, set each factor equal to zero:   2x – 1 = 0  ⟹  x = 1/2   x – 9 = 0  ⟹  x = 9   x + 9 = 0  ⟹  x = –9 So, the zeros of the polynomial are x = 1/2, x = 9, and x = –9.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that cubic polynomials like \( 2x^{3}-x^{2}-162x+81 \) were first studied in depth during the Renaissance? Mathematicians like Cardano and Ferrari faced challenges solving cubic equations, and their work laid the groundwork for modern algebra. Their discoveries opened doors not just in math, but also in fields like physics and engineering! When you're tackling a polynomial, a common mistake is overlooking the Rational Root Theorem. This nifty tool helps identify possible rational roots based on factors of the constant term and leading coefficient. Testing these potential roots can save you time and frustration, guiding you closer to solving the polynomial more efficiently!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad