Pregunta
Solve for \( x \). Leave answer in radical form. \( \log _{4} x+\log _{4} 2 x= \)
Ask by Cook Brewer. in South Africa
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( x = \frac{\sqrt{2}}{2} \)
Solución
To solve the equation \( \log_{4} x + \log_{4} (2x) = 0 \), we can use the properties of logarithms.
1. **Combine the logarithms**:
Using the property \( \log_b a + \log_b c = \log_b (a \cdot c) \), we can combine the two logarithms:
\[
\log_{4} x + \log_{4} (2x) = \log_{4} (x \cdot 2x) = \log_{4} (2x^2)
\]
2. **Set the equation**:
Now we have:
\[
\log_{4} (2x^2) = 0
\]
3. **Convert the logarithmic equation to exponential form**:
The equation \( \log_{4} (2x^2) = 0 \) can be rewritten in exponential form:
\[
2x^2 = 4^0
\]
Since \( 4^0 = 1 \), we have:
\[
2x^2 = 1
\]
4. **Solve for \( x^2 \)**:
Dividing both sides by 2 gives:
\[
x^2 = \frac{1}{2}
\]
5. **Take the square root**:
Taking the square root of both sides, we find:
\[
x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}
\]
Since \( x \) must be positive in the context of logarithms, we discard the negative solution.
Thus, the final answer is:
\[
x = \frac{\sqrt{2}}{2}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the equation \( \log_{4} x + \log_{4} 2x = 1 \), we can utilize the properties of logarithms. First, we can combine the logarithms: \[ \log_{4} x + \log_{4} 2x = \log_{4} (x \cdot 2x) = \log_{4} (2x^2) \] Now, the equation simplifies to: \[ \log_{4} (2x^2) = 1 \] This implies that: \[ 2x^2 = 4^{1} \] Since \( 4^{1} = 4 \), we can write: \[ 2x^2 = 4 \] Dividing both sides by 2 gives us: \[ x^2 = 2 \] Taking the square root of both sides, we find: \[ x = \sqrt{2} \] Thus, the solution is: \[ \boxed{\sqrt{2}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium