Pregunta
upstudy study bank question image url

Use the given zero to find the remaining zeros of the function. \( f(x)=x^{3}-7 x^{2}+9 x-63 ; \) zero: \( -3 i \) The remaining zero(s) of \( f \) is(are) (Use a comma to separate answers as needed.)

Ask by Rogers Greene. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The remaining zero of \( f \) is \( 7 \).

Solución

To find the remaining zeros of the function \( f(x) = x^3 - 7x^2 + 9x - 63 \) given that one zero is \( -3i \), we can use the fact that the coefficients of the polynomial are real numbers. This means that the complex zeros must occur in conjugate pairs. Therefore, if \( -3i \) is a zero, then its conjugate \( 3i \) is also a zero. Next, we can find the remaining zero by performing polynomial long division or synthetic division to divide \( f(x) \) by the quadratic polynomial formed by the two complex zeros, which is \( (x + 3i)(x - 3i) = x^2 + 9 \). Let's perform the division of \( f(x) \) by \( x^2 + 9 \) to find the remaining zero. 1. **Divide \( f(x) \) by \( x^2 + 9 \)**: - The first term of \( f(x) \) is \( x^3 \), and the first term of \( x^2 + 9 \) is \( x^2 \). We divide \( x^3 \) by \( x^2 \) to get \( x \). - Multiply \( x \) by \( x^2 + 9 \) to get \( x^3 + 9x \). - Subtract this from \( f(x) \): \[ (x^3 - 7x^2 + 9x - 63) - (x^3 + 9x) = -7x^2 - 63 \] - Now, divide \( -7x^2 \) by \( x^2 \) to get \( -7 \). - Multiply \( -7 \) by \( x^2 + 9 \) to get \( -7x^2 - 63 \). - Subtract this from the previous result: \[ (-7x^2 - 63) - (-7x^2 - 63) = 0 \] The result of the division is \( x - 7 \). 2. **Set the quotient equal to zero to find the remaining zero**: \[ x - 7 = 0 \implies x = 7 \] Thus, the remaining zeros of the function \( f(x) \) are \( 3i, -3i, 7 \). The remaining zero(s) of \( f \) is(are) \( 7 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Since the function \( f(x) = x^{3} - 7x^{2} + 9x - 63 \) has a complex zero \( -3i \), its conjugate \( 3i \) must also be a zero. To find the remaining zero, we can use polynomial division or synthetic division to divide the cubic polynomial by the quadratic factor formed by the complex zeros, \( (x + 3i)(x - 3i) = x^2 + 9 \). Carrying out the division, we find \( f(x) \) can be expressed as \( (x^2 + 9)(x - 7) \). Thus, the third remaining zero is \( 7 \). The complete list of zeros is \( -3i, 3i, 7 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad