Pregunta
upstudy study bank question image url

Consider the quadratic equation. \( -t^{2}-9 t-7=0 \) State the values of \( a, b, c \), in the standard form of a quadratic equation. \( a=\square \) \( b=\square \) Determine the value of the discriminant, \( D=\square \) Since the discriminant is Select an answer \( \vee \), there will be Hint: Enter the number of real solutions.

Ask by Bright Mcfarlane. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( a = -1 \), \( b = -9 \), \( c = -7 \), \( D = 53 \), and there are two distinct real solutions.

Solución

To analyze the quadratic equation \( -t^{2}-9t-7=0 \), we first need to express it in the standard form of a quadratic equation, which is given by: \[ at^2 + bt + c = 0 \] From the equation \( -t^{2}-9t-7=0 \), we can identify the coefficients: 1. \( a = -1 \) 2. \( b = -9 \) 3. \( c = -7 \) Now, we can summarize the values: \[ a = -1 \] \[ b = -9 \] \[ c = -7 \] Next, we will calculate the discriminant \( D \) using the formula: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (-9)^2 - 4(-1)(-7) \] Now, let's calculate \( D \): \[ D = 81 - 28 \] \[ D = 53 \] Now we have: \[ D = 53 \] Since the discriminant \( D \) is greater than zero (\( D > 0 \)), this indicates that there will be two distinct real solutions. To summarize: - The values are: - \( a = -1 \) - \( b = -9 \) - \( c = -7 \) - The value of the discriminant is: - \( D = 53 \) - Since the discriminant is greater than zero, there will be **two distinct real solutions**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To express the given quadratic equation \( -t^{2}-9 t-7=0 \) in standard form \( at^2 + bt + c = 0 \), we can identify the coefficients as follows: \( a = -1 \) \( b = -9 \) \( c = -7 \) Now, for the discriminant \( D \), we use the formula \( D = b^2 - 4ac \). Plugging in our values, we get: \( D = (-9)^2 - 4(-1)(-7) = 81 - 28 = 53 \) Since the discriminant is positive (\( D > 0 \)), there will be 2 real solutions. That's right! When you have a positive discriminant, it means the quadratic intersects the x-axis at two points—double the fun with those solutions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad