Pregunta
upstudy study bank question image url

Siven the following function, (a) find the vertex; (b) determine whether there is a maximum or a minimum value, and find the value; (c) find the range; and (d) find the ntervals on which the function is increasing and the intervals on which the function is decreasing. (x) \( =-\frac{1}{2} x^{2}+5 x-1 \) (a) The vertex is \( \left(5, \frac{23}{2}\right) \). (Type an ordered pair, using integers or fractions.) (b) Determine whether the parabola has a maximum value or a minimum value and find the value. A. The correct choice below and fill in the answer box within your choice. (Tyener or a fraction.) B opens downward and has a maximum value olt

Ask by Mathis Hodges. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The vertex is (5, 23/2). (b) The parabola opens downward and has a maximum value of 23/2. (c) The range is (–∞, 23/2]. (d) The function is increasing on (–∞, 5) and decreasing on (5, ∞).

Solución

We start with the function   y = –½ x² + 5x – 1. (a) To find the vertex, use the formulas   x-coordinate: x = –b/(2a)   y-coordinate: y = f(x). Here, a = –½ and b = 5, so   x = –5/(2(–½)) = –5/–1 = 5. Now, substitute x = 5 into the function:   y = –½(5)² + 5(5) – 1    = –½(25) + 25 – 1    = –12.5 + 25 – 1    = 11.5    = 23/2. Thus, the vertex is (5, 23/2). (b) Because the coefficient a = –½ is negative, the parabola opens downward. This means that the vertex represents the maximum value of the function. Therefore, the maximum value is 23/2. (c) Since the maximum value is 23/2 and the parabola opens downward, the function takes all y-values less than or equal to 23/2. Hence, the range is   (–∞, 23/2]. (d) To determine where the function is increasing and decreasing, consider the derivative:   y' = d/dx (–½ x² + 5x – 1) = –x + 5. Set the derivative equal to 0 to find the critical point:   –x + 5 = 0 ⟹ x = 5. For x < 5, choose a test value (for example, x = 0):   y'(0) = –0 + 5 = 5 > 0, so the function is increasing on (–∞, 5). For x > 5, choose a test value (for example, x = 6):   y'(6) = –6 + 5 = –1 < 0, so the function is decreasing on (5, ∞). Summary of Answers:  (a) Vertex: (5, 23/2)  (b) The parabola opens downward and has a maximum value of 23/2.  (c) Range: (–∞, 23/2]  (d) Increasing on (–∞, 5) and decreasing on (5, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle this quadratic function, remember that the vertex form of a parabola is given by the coordinate \((h, k)\), which represents the maximum or minimum point. Here, since the coefficient of \(x^2\) is negative, it indicates the parabola opens downwards, thus confirming there is a maximum value at the vertex. And speaking of real-world applications, quadratic functions like this show up everywhere! From maximizing profits in business to determining the optimal angle for launching a projectile, understanding parabolas can help solve practical problems in fields like physics, engineering, and economics. Embrace the parabola!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad