Pregunta
Question Use the discriminant to determine the number of real solutions to the quadratic equation. \[ 81 d^{2}+18 d+1=0 \]
Ask by Chavez Johnson. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The quadratic equation has exactly one real solution.
Solución
For the quadratic equation 81d² + 18d + 1 = 0, we identify the coefficients as follows:
a = 81, b = 18, c = 1.
The discriminant Δ is given by:
Δ = b² – 4ac = (18)² – 4·81·1 = 324 – 324 = 0.
Since the discriminant is 0, the quadratic has exactly one real solution (a repeated root).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the number of real solutions for the quadratic equation \( 81 d^{2}+18 d+1=0 \), we first identify the coefficients: \( a = 81 \), \( b = 18 \), and \( c = 1 \). The discriminant \( D \) is calculated using the formula \( D = b^2 - 4ac \). Plugging in the values: \[ D = 18^2 - 4 \cdot 81 \cdot 1 = 324 - 324 = 0 \] Since the discriminant \( D = 0 \), this indicates that there is exactly one real solution to the quadratic equation.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium