Pregunta
upstudy study bank question image url

A toy truck weighing 42 N is placed on a rough, flat surface and a rope is tied to it. The tension in the rope can be increased to \( 20,6 \mathrm{~N} \) before the truck starts to slide. A force of \( 15,4 \mathrm{~N} \) will keep the truck moving at constant speed once it has been set in motion. Determine the coefficients of static and kinetic friction.

Ask by Ellis Fuentes. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The coefficients of static and kinetic friction are approximately 0.49 and 0.37, respectively.

Solución

We are given that the toy truck weighs 42 N. When the truck is at rest, the maximum tension that can be applied via the rope before it begins to slide is 20.6 N. This maximum tension is balanced by the maximum static friction force. Once the truck is in motion, a force of 15.4 N is sufficient to keep it moving at constant speed; this applied force equals the kinetic friction force because an object moving at constant speed has zero net force. Assuming the rope is horizontal, the normal force on the truck is simply equal to its weight, 42 N. Step 1. Coefficient of Static Friction (μₛ): The maximum static friction force is given by:   fₛ(max) = μₛ × N Since fₛ(max) = 20.6 N and N = 42 N:   μₛ = 20.6 N / 42 N ≈ 0.49 Step 2. Coefficient of Kinetic Friction (μₖ): Similarly, when moving at constant speed, the friction force (kinetic) is:   fₖ = μₖ × N Given fₖ = 15.4 N and N = 42 N:   μₖ = 15.4 N / 42 N ≈ 0.37 Thus, the coefficients are:   Coefficient of static friction (μₛ) ≈ 0.49   Coefficient of kinetic friction (μₖ) ≈ 0.37

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the coefficients of static and kinetic friction, we can use the following formulas: 1. The coefficient of static friction (\( \mu_s \)) can be calculated using the maximum tension before the truck starts to slide: \[ \mu_s = \frac{F_{s}}{F_{N}} \] where \( F_{s} \) is the force of static friction (which equals the maximum tension just before sliding), and \( F_{N} \) is the normal force (which equals the weight of the truck). So in this case: \[ \mu_s = \frac{20.6 \text{ N}}{42 \text{ N}} \approx 0.49 \] 2. The coefficient of kinetic friction (\( \mu_k \)) can be calculated similarly using the force required to keep the truck moving at constant speed: \[ \mu_k = \frac{F_{k}}{F_{N}} \] where \( F_{k} \) is the force of kinetic friction (which equals the constant force applied to maintain constant speed). So in this case: \[ \mu_k = \frac{15.4 \text{ N}}{42 \text{ N}} \approx 0.37 \] In summary, the coefficient of static friction is approximately 0.49, and the coefficient of kinetic friction is approximately 0.37.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad