Find all excluded values for the expression. That is, find all values of \( w \) for which the expression is undefined. \( \frac{w^{2}-w-20}{w^{2}-14 w+45} \) If there is more than one value, separate them with commas. \( w=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the excluded values for the expression \(\frac{w^{2}-w-20}{w^{2}-14 w+45}\), we need to determine when the denominator is equal to zero. First, factor the denominator: 1. The quadratic \(w^2 - 14w + 45\) can be factored as: \[ (w - 5)(w - 9) \] Setting the factors equal to zero gives us: \[ w - 5 = 0 \quad \Rightarrow \quad w = 5 \] \[ w - 9 = 0 \quad \Rightarrow \quad w = 9 \] Thus, the expression is undefined for \(w = 5\) and \(w = 9\). So, the excluded values are: \( w=5, 9 \)
