Pregunta
upstudy study bank question image url

A \( 20 \% \) acid solution is mixed with a \( 70 \% \) acid solution to get 50 liters of a \( 40 \% \) solution. Which of the following expressions is equal to \( 4(50) \) ? \( 2 x+7 y \) \( x+y \) \( 0.2 x+0.7 y \)

Ask by Horton Weston. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( 2x + 7y \) is equal to \( 4(50) \).

Solución

To solve the problem, we need to set up the equations based on the information given about the acid solutions. 1. **Known Conditions:** - Let \( x \) be the amount (in liters) of the \( 20\% \) acid solution. - Let \( y \) be the amount (in liters) of the \( 70\% \) acid solution. - The total volume of the mixture is \( 50 \) liters. - The resulting solution is \( 40\% \) acid. 2. **Setting Up the Equations:** - From the total volume, we have: \[ x + y = 50 \] - The total amount of acid in the mixture can be expressed as: \[ 0.2x + 0.7y = 0.4(50) \] 3. **Calculating \( 0.4(50) \):** \[ 0.4(50) = 20 \] So, the second equation becomes: \[ 0.2x + 0.7y = 20 \] 4. **Now we have a system of equations:** - \( x + y = 50 \) (1) - \( 0.2x + 0.7y = 20 \) (2) 5. **Finding the expressions:** We need to check which of the given expressions is equal to \( 4(50) = 200 \). - For \( 2x + 7y \): - Multiply equation (2) by \( 10 \): \[ 10(0.2x + 0.7y) = 10(20) \implies 2x + 7y = 200 \] This expression is equal to \( 200 \). - For \( x + y \): - This equals \( 50 \), not \( 200 \). - For \( 0.2x + 0.7y \): - This equals \( 20 \), not \( 200 \). 6. **Conclusion:** The expression that is equal to \( 4(50) \) is: \[ 2x + 7y \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, let's denote \( x \) as the amount of the \( 20\% \) acid solution and \( y \) as the amount of the \( 70\% \) acid solution. The first equation we can set up based on the total volume is: \[ x + y = 50 \] Next, for the acid concentration, we can set up the second equation as follows: \[ 0.2x + 0.7y = 0.4(50) \] Now, since \( 0.4(50) = 20 \), we rewrite the second equation: \[ 0.2x + 0.7y = 20 \] Now we have a system of equations: 1. \( x + y = 50 \) 2. \( 0.2x + 0.7y = 20 \) To find which expression equals \( 4(50) \), which is \( 200 \), let's evaluate the expressions: 1. \( 2x + 7y \): We can express \( y \) in terms of \( x \) using the first equation, which gives us \( y = 50 - x \). Then, substituting this into the expression gives \( 2x + 7(50 - x) = 2x + 350 - 7x = 350 - 5x \). 2. \( x + y \): This simplifies directly to \( 50 \), which does not match. 3. \( 0.2x + 0.7y \): As mentioned, this equals \( 20 \). Clearly, none of these expressions directly equate to \( 200 \). However, through substitution and manipulation of expressions, you can evaluate combinations to create equivalent forms if additional information were provided. This scenario illustrates how you can set up a system of equations to solve concentration problems, which often appear in chemistry and real-world applications such as mixing solutions or even cooking!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad