Pregunta
upstudy study bank question image url

Question 14 Suppose \( \lim _{x \rightarrow 3} f(x)=-3 \) and \( \lim _{x \rightarrow 3} g(x)=-6 \). Find the limit \( \lim _{x \rightarrow 8} \frac{f(x)}{g(x)-2 f(x)} \). Give your answer as an integer or a simplified fraction. If the limit does not exist, enter DNE.

Ask by Brooks Collins. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The limit does not exist (DNE).

Solución

To find the limit \[ \lim _{x \rightarrow 8} \frac{f(x)}{g(x)-2 f(x)}, \] we first need to evaluate the expressions for \( f(x) \) and \( g(x) \) as \( x \) approaches 3, since we have the limits at that point. Given: - \( \lim _{x \rightarrow 3} f(x) = -3 \) - \( \lim _{x \rightarrow 3} g(x) = -6 \) Now, we can substitute these limits into the expression we are trying to evaluate. First, we need to find \( g(x) - 2f(x) \): \[ \lim _{x \rightarrow 3} (g(x) - 2f(x)) = \lim _{x \rightarrow 3} g(x) - 2 \lim _{x \rightarrow 3} f(x) = -6 - 2(-3). \] Calculating this gives: \[ -6 + 6 = 0. \] Now we have: \[ \lim _{x \rightarrow 3} g(x) - 2f(x) = 0. \] Next, we substitute into the limit expression: \[ \lim _{x \rightarrow 3} \frac{f(x)}{g(x) - 2f(x)} = \frac{-3}{0}. \] Since the denominator approaches 0, we need to determine the behavior of the limit. To analyze this, we can check the signs of the numerator and denominator as \( x \) approaches 3: - The numerator \( f(x) \) approaches \(-3\) (which is negative). - The denominator \( g(x) - 2f(x) \) approaches \( 0 \) from the negative side (since \( g(x) \) approaches \(-6\) and \( 2f(x) \) approaches \(-6\), making the denominator approach \( 0 \) from the negative side). Thus, we have: \[ \frac{-3}{0^-} \rightarrow +\infty. \] Therefore, the limit does not exist in the traditional sense, as it approaches positive infinity. Thus, the final answer is: \[ \text{DNE}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the limit \( \lim _{x \rightarrow 8} \frac{f(x)}{g(x) - 2 f(x)} \), we start by recognizing that the limits of the functions \( f(x) \) and \( g(x) \) as \( x \) approaches 3 can help us simplify our expression. Given: \[ \lim_{x \rightarrow 3} f(x) = -3 \] \[ \lim_{x \rightarrow 3} g(x) = -6 \] We first evaluate \( g(x) - 2f(x) \): \[ \lim_{x \rightarrow 3} (g(x) - 2f(x)) = \lim_{x \rightarrow 3} g(x) - 2 \lim_{x \rightarrow 3} f(x) = -6 - 2(-3) = -6 + 6 = 0 \] Now we have: \[ \lim_{x \rightarrow 3} \frac{f(x)}{g(x) - 2f(x)} = \frac{-3}{0} \] This indicates that the function is approaching a form of \(-\frac{3}{0}\), which typically suggests that the limit is undefined or possibly approaches infinity or negative infinity, depending on the direction from which \( g(x) - 2f(x) \) approaches zero. To determine the behavior of \( g(x) - 2f(x) \) around \( x = 3 \), we need to evaluate whether \( g(x) - 2f(x) \) is approaching 0 from the positive or negative side. If we substitute a value slightly less than 3 (let's say 2.9) into \( g(x) \) and \( f(x) \) would result in: - \( g(2.9) \) will be close to \(-6\) (slightly above), - \( f(2.9) \) will be close to \(-3\) leading to \( g(2.9) - 2f(2.9) \) approaching from the positive side (as \( g \text{ plus } 6 \) compensates for twice negative). As \( x \) approaches 3 from the left, \( g(x) - 2f(x) \) approaches 0 positively, which leads: \[ -\frac{3}{0^+} \to -\infty \] Conversely, approaching from the right leads to \( g(x) - 2f(x) \) approaching 0 negatively. Thus, this signifies a split direction. We conclude: \[ \lim_{x \rightarrow 3} \frac{f(x)}{g(x) - 2f(x)} = - \infty \] Thus, the final limit is: \[ \lim_{x \rightarrow 8} \frac{f(x)}{g(x) - 2f(x)} = \text{DNE} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad