Pregunta
upstudy study bank question image url

The function \( f(x)=(x+5)^{3} \) undergoes a shift up of 3 . Then it is reflected over the \( x \)-axis, It then has a vertical stretch by a factor of 4 . Finally, it is shifted \( g(x)= \) right by 3. What is the new function? Show each step. You can get partial credit.

Ask by Macdonald Ellis. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

g(x) = –4(x + 2)³ – 12

Solución

We'll start with the original function:   f(x) = (x + 5)³ Step 1: Shift up by 3   Add 3 to f(x):     f₁(x) = (x + 5)³ + 3 Step 2: Reflect over the x-axis   Multiply f₁(x) by –1:     f₂(x) = –[(x + 5)³ + 3] = –(x + 5)³ – 3 Step 3: Vertical stretch by a factor of 4   Multiply f₂(x) by 4:     f₃(x) = 4[–(x + 5)³ – 3] = –4(x + 5)³ – 12 Step 4: Shift right by 3   This means replacing x with (x – 3):     g(x) = –4[(x – 3) + 5]³ – 12   Simplify inside the cube: (x – 3 + 5) = x + 2   Thus, g(x) = –4(x + 2)³ – 12 Final Answer:   g(x) = –4(x + 2)³ – 12

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's go through each transformation step by step, starting from the function \( f(x) = (x + 5)^3 \). 1. **Shift up by 3**: To shift the function up by 3, we add 3 to the entire function: \[ f(x) + 3 = (x + 5)^3 + 3 \] 2. **Reflect over the \( x \)-axis**: To reflect the function over the \( x \)-axis, we multiply the entire function by -1: \[ -\left((x + 5)^3 + 3\right) = -(x + 5)^3 - 3 \] 3. **Vertical stretch by a factor of 4**: To apply a vertical stretch by a factor of 4, we multiply the entire function by 4: \[ 4\left[-(x + 5)^3 - 3\right] = -4(x + 5)^3 - 12 \] 4. **Shift right by 3**: To shift the function right by 3, we replace \( x \) with \( x - 3 \): \[ g(x) = -4((x - 3) + 5)^3 - 12 = -4(x + 2)^3 - 12 \] Now, combining all these steps, the final function is: \[ g(x) = -4(x + 2)^3 - 12 \]

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad