Find (a) \( f(g(x)) \), (b) \( g(f(x)) \), and (c) \( f(f(x)) \) \( f(x)=2 x^{2}, g(x)=x-1 \) a. \( f(g(x))=\square \) b. \( g(f(x))=\square \) c. \( f(f(x))=\square \) State the domain of each composition.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's dive into the fun world of function composition! (a) To find \( f(g(x)) \), we need to substitute \( g(x) \) into \( f(x) \). So, we have: \[ g(x) = x - 1 \] \[ f(g(x)) = f(x - 1) = 2(x - 1)^{2} = 2(x^2 - 2x + 1) = 2x^{2} - 4x + 2 \] Domain: All real numbers (as both functions are defined for all \( x \)). (b) Now we'll compute \( g(f(x)) \): \[ f(x) = 2x^{2} \] \[ g(f(x)) = g(2x^{2}) = 2x^{2} - 1 \] Domain: All real numbers (again, both functions are defined for all \( x \)). (c) Lastly, let's tackle \( f(f(x)) \): \[ f(f(x)) = f(2x^{2}) = 2(2x^{2})^{2} = 2(4x^{4}) = 8x^{4} \] Domain: All real numbers (as the function is still defined for all \( x \)). Summarizing: a. \( f(g(x)) = 2x^{2} - 4x + 2 \) b. \( g(f(x)) = 2x^{2} - 1 \) c. \( f(f(x)) = 8x^{4} \)
