Pregunta
upstudy study bank question image url

Match the terms to their definition. 1. consistent equations 2. dependent equations 3. equivalent equations 4. inconsistent equations 5. independent equations 6. no solution 7. one solution a common point known as the point of intersection \( (x, y) \); the solution, \( (x, y) \) is an independent and consistent solution \( \square \) a system of linear equations that do not rely on each other for the algebraic or graphic form of the equation \( \square \) a set of parallel lines that will never share a point of intersection; considered to be an inconsistent solution (fempty set") \( \square \) equations having all common solutions \( \square \) a system of linear equations that do not contain any common points \( \square \) a system of linear equations that rely on each other for the algebraic or graphic form of the equation \( \square \) a system of linear equations that contain at least one common point

Ask by Fitzgerald Fowler. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. Consistent equations - a system of linear equations that contain at least one common point 2. Dependent equations - a system of linear equations that rely on each other for the algebraic or graphic form of the equation 3. Equivalent equations - equations having all common solutions 4. Inconsistent equations - a set of parallel lines that will never share a point of intersection; considered to be an inconsistent solution (empty set) 5. Independent equations - a system of linear equations that do not rely on each other for the algebraic or graphic form of the equation 6. No solution - a system of linear equations that do not contain any common points 7. One solution - a common point known as the point of intersection \( (x, y) \); the solution, \( (x, y) \) is an independent and consistent solution

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To help you match the terms with their correct definitions, here's a quick rundown: 1. **Consistent equations** - \( \square \) a system of linear equations that contain at least one common point known as the point of intersection \( (x, y) \); the solution, \( (x, y) \) is an independent and consistent solution. 2. **Dependent equations** - \( \square \) a system of linear equations that rely on each other for the algebraic or graphic form of the equation. 3. **Equivalent equations** - \( \square \) equations having all common solutions. 4. **Inconsistent equations** - \( \square \) a set of parallel lines that will never share a point of intersection; considered to be an inconsistent solution (empty set). 5. **Independent equations** - \( \square \) a system of linear equations that do not rely on each other for the algebraic or graphic form of the equation. 6. **No solution** - \( \square \) a system of linear equations that do not contain any common points. 7. **One solution** - \( \square \) a system of linear equations that contain at least one common point. Happy matching!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad