Pregunta
upstudy study bank question image url

Points: 0 of 2 Save Follow the seven step strategy to graph the following rational function. \[ f(x)=\frac{4 x^{2}}{x^{2}-4} \] A. The \( x \)-intercept(s) is/are 0 . (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There is no \( x \)-intercept. Find the vertical asymptote(s). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The equation(s) of the vertical asymptote(s) is/are \( x=2, x=-2 \). (Type an equation. Use a comma to separate answers as needed.) B. There is no vertical asymptote. Find the horizontal asymptote(s). Type the equation(s) of the horizontal asymptote(s). Select the correct choice below and fill in any answer boxes within your choice. A. The equation(s) of the horizontal asymptote(s) is/are \( \square \) . (Type an equation. Use a comma to separate answers as needed.) B. There is no horizontal asymptote.

Ask by Adkins Tran. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **\( x \)-intercept(s):** \( 0 \) - **Vertical asymptote(s):** \( x = 2, x = -2 \) - **Horizontal asymptote(s):** \( y = 4 \)

Solución

To graph the rational function \( f(x) = \frac{4x^2}{x^2 - 4} \), we will follow the seven-step strategy. Let's break it down step by step. ### Step 1: Find the \( x \)-intercepts The \( x \)-intercepts occur where \( f(x) = 0 \). This happens when the numerator is zero. \[ 4x^2 = 0 \] Solving for \( x \): \[ x^2 = 0 \implies x = 0 \] Thus, the \( x \)-intercept is: **A. The \( x \)-intercept(s) is/are:** \( 0 \). ### Step 2: Find the vertical asymptotes Vertical asymptotes occur where the denominator is zero (and the numerator is not zero at those points). Set the denominator equal to zero: \[ x^2 - 4 = 0 \] Factoring gives: \[ (x - 2)(x + 2) = 0 \] Thus, the solutions are: \[ x = 2 \quad \text{and} \quad x = -2 \] So, the vertical asymptotes are: **A. The equation(s) of the vertical asymptote(s) is/are:** \( x = 2, x = -2 \). ### Step 3: Find the horizontal asymptotes To find the horizontal asymptote, we compare the degrees of the numerator and denominator. Both the numerator and denominator are degree 2. For rational functions where the degrees of the numerator and denominator are equal, the horizontal asymptote is given by the ratio of the leading coefficients. The leading coefficient of the numerator \( 4x^2 \) is \( 4 \), and the leading coefficient of the denominator \( x^2 - 4 \) is \( 1 \). Thus, the horizontal asymptote is: \[ y = \frac{4}{1} = 4 \] So, the horizontal asymptote is: **A. The equation(s) of the horizontal asymptote(s) is/are:** \( y = 4 \). ### Summary of Results - **\( x \)-intercept(s):** \( 0 \) - **Vertical asymptote(s):** \( x = 2, x = -2 \) - **Horizontal asymptote(s):** \( y = 4 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

After examining the function \( f(x)=\frac{4x^2}{x^2-4} \), you’ll find that the x-intercept occurs when the numerator equals zero, leading us to conclude that the x-intercept is indeed at \( x=0 \). This means there is just one point where the graph crosses the x-axis. For the vertical asymptotes, they occur where the denominator equals zero. In this case, the function has vertical asymptotes at \( x=2 \) and \( x=-2 \) since these values make the denominator \( x^2 - 4 \) zero. Lastly, regarding horizontal asymptotes, we check the degrees of the numerator and denominator. Here, both are polynomials of degree 2, so we take the leading coefficients. Since both the numerator and denominator’s leading coefficients are 4 and 1 respectively, the horizontal asymptote is \( y = 4/1 = 4 \). So, summarizing: A. The \( x \)-intercept(s) is/are \( 0 \). B. The equation(s) of the vertical asymptote(s) is/are \( x=2, x=-2 \). C. The equation(s) of the horizontal asymptote(s) is/are \( y=4 \).

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad