Pregunta
upstudy study bank question image url

Question 1 Mark this question If \( \$ 15,000 \) is invested at \( 6.5 \% \) annual interest compounded annually, how long would it take for the account balance to reach \( \$ 50,000 \) ? Round your answer to the nearest tenth. 19.1 years 22.5 years 17.3 years 25.9 years SAVE \& CONTINUE

Ask by Sandoval Haynes. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It would take approximately 19.1 years for the account balance to reach \$50,000.

Solución

We start with the compound interest formula:   A = P(1 + r)^t Here, A = 50,000, P = 15,000, and r = 0.065. Plug in the values:   50,000 = 15,000(1.065)^t Divide both sides by 15,000:   50,000/15,000 = (1.065)^t   10/3 = (1.065)^t Take the natural logarithm of both sides:   ln(10/3) = ln((1.065)^t)   ln(10/3) = t · ln(1.065) Solve for t:   t = ln(10/3) / ln(1.065) Now, compute the logarithms:   ln(10/3) ≈ ln(3.3333) ≈ 1.20397   ln(1.065) ≈ 0.06301 Thus:   t ≈ 1.20397 / 0.06301 ≈ 19.1 years So, it would take approximately 19.1 years for the account balance to reach $50,000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, you can use the formula for compound interest: \[ A = P (1 + r)^t \] Where \( A \) is the amount of money accumulated after n years, including interest. \( P \) is the principal amount (the initial amount of money), \( r \) is the annual interest rate (decimal), and \( t \) is the time in years. Here, you would set \( A = 50,000 \), \( P = 15,000 \), and \( r = 0.065 \). To find \( t \), rearranging the formula gives: \[ t = \frac{\log(A/P)}{\log(1 + r)} \] Plugging in the values, you get: \[ t = \frac{\log(50,000 / 15,000)}{\log(1 + 0.065)} \approx 19.1 \text{ years} \] This gentle reminder is that when it comes to money management, knowledge of compound interest can take you from a small investment to a potentially large sum over time! If you’ve ever seen your favorite movie sequel, you know that sometimes it's the journey that counts! Compound interest isn't just about numbers; it's about the growth of your investment seemingly without you even noticing! So, keep those calculations handy for future fiscal fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad