Pregunta
Solve the inequality \( a+10 \geq \frac{12}{7} \), and write the solution in interval notation.
Ask by Stuart Pritchard. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution is \( a \geq -\frac{58}{7} \), which in interval notation is \([- \frac{58}{7}, \infty)\).
Solución
Starting with the inequality:
a + 10 ≥ 12/7
Subtract 10 from both sides:
a ≥ (12/7) − 10
Since 10 is equivalent to 70/7, we have:
a ≥ (12 − 70)/7
a ≥ −58/7
In interval notation, the solution is:
[−58/7, ∞)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the inequality \( a+10 \geq \frac{12}{7} \), we start by isolating \( a \). We can do this by subtracting 10 from both sides: \[ a \geq \frac{12}{7} - 10 \] Next, we convert 10 into a fraction with a denominator of 7: \[ 10 = \frac{70}{7} \] Now we can rewrite the right side of the inequality: \[ \frac{12}{7} - \frac{70}{7} = \frac{12 - 70}{7} = \frac{-58}{7} \] This gives us the inequality: \[ a \geq \frac{-58}{7} \] In interval notation, this is expressed as: \[ \left[ \frac{-58}{7}, \infty \right) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium