Pregunta
What are the two solutions of \( 2 x^{2}=-x^{2}-5 x-1 \) ? the \( y \)-coordinates of the intersection points of the graphs of \( y=2 x^{2} \) and \( y=-x^{2}-5 x-1 \) the \( x \)-coordinates of the intersection points of the graphs of \( y=2 x^{2} \) and \( y=-x^{2}-5 x-1 \) and
Ask by Sherman French. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solutions are \( x = -\frac{5 + \sqrt{13}}{6} \) and \( x = -\frac{5 - \sqrt{13}}{6} \). The corresponding \( y \)-coordinates are \( y = \frac{19 + 5\sqrt{13}}{18} \) and \( y = \frac{19 - 5\sqrt{13}}{18} \).
Solución
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(2x^{2}=-x^{2}-5x-1\)
- step1: Move the expression to the left side:
\(3x^{2}+5x+1=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-5\pm \sqrt{5^{2}-4\times 3}}{2\times 3}\)
- step3: Simplify the expression:
\(x=\frac{-5\pm \sqrt{5^{2}-4\times 3}}{6}\)
- step4: Simplify the expression:
\(x=\frac{-5\pm \sqrt{13}}{6}\)
- step5: Separate into possible cases:
\(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=\frac{-5-\sqrt{13}}{6}\end{align}\)
- step6: Rewrite the fraction:
\(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=-\frac{5+\sqrt{13}}{6}\end{align}\)
- step7: Rewrite:
\(x_{1}=-\frac{5+\sqrt{13}}{6},x_{2}=\frac{-5+\sqrt{13}}{6}\)
To find the solutions of the equation \( 2x^{2} = -x^{2} - 5x - 1 \), we first rearrange it into standard form:
\[
2x^{2} + x^{2} + 5x + 1 = 0
\]
This simplifies to:
\[
3x^{2} + 5x + 1 = 0
\]
Now, we can solve this quadratic equation. The solutions are:
\[
x_{1} = -\frac{5 + \sqrt{13}}{6}, \quad x_{2} = -\frac{5 - \sqrt{13}}{6}
\]
### \( y \)-coordinates of the intersection points
To find the \( y \)-coordinates of the intersection points, we substitute the \( x \)-coordinates back into either of the original equations. We'll use \( y = 2x^{2} \).
1. For \( x_{1} = -\frac{5 + \sqrt{13}}{6} \):
\[
y_{1} = 2\left(-\frac{5 + \sqrt{13}}{6}\right)^{2}
\]
2. For \( x_{2} = -\frac{5 - \sqrt{13}}{6} \):
\[
y_{2} = 2\left(-\frac{5 - \sqrt{13}}{6}\right)^{2}
\]
Now, let's calculate these \( y \)-coordinates.
### Calculating \( y_{1} \) and \( y_{2} \)
1. For \( y_{1} \):
\[
y_{1} = 2\left(-\frac{5 + \sqrt{13}}{6}\right)^{2} = 2 \cdot \frac{(5 + \sqrt{13})^{2}}{36} = \frac{2(25 + 10\sqrt{13} + 13)}{36} = \frac{2(38 + 10\sqrt{13})}{36} = \frac{19 + 5\sqrt{13}}{18}
\]
2. For \( y_{2} \):
\[
y_{2} = 2\left(-\frac{5 - \sqrt{13}}{6}\right)^{2} = 2 \cdot \frac{(5 - \sqrt{13})^{2}}{36} = \frac{2(25 - 10\sqrt{13} + 13)}{36} = \frac{2(38 - 10\sqrt{13})}{36} = \frac{19 - 5\sqrt{13}}{18}
\]
### Summary of Results
- The \( x \)-coordinates of the intersection points are:
- \( x_{1} = -\frac{5 + \sqrt{13}}{6} \)
- \( x_{2} = -\frac{5 - \sqrt{13}}{6} \)
- The \( y \)-coordinates of the intersection points are:
- \( y_{1} = \frac{19 + 5\sqrt{13}}{18} \)
- \( y_{2} = \frac{19 - 5\sqrt{13}}{18} \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg



¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium