Pregunta
upstudy study bank question image url

PART 2: Investigate and rigorously prove the identity: \( \sin ^{2} A+\cos ^{2} A=1 \) using coordinate geometry and algebraic manipulation. Prior knowledge required: - Definition of sine and cosine in a right-angled triangle. - Pythagoras Theorem. - Cartesian plan representation of trigonometric functions. TASK 1: Using \( \triangle \) AOP drawn in Part 1. Marks: 12 Let \( x \)-coordinate of P be \( \cos A \) and the \( y \)-coordinate of P be \( \sin A \) respectively. a) Express \( \triangle \mathrm{AOP} \) as Pythagoras Theorem in terms of \( \sin A \) and \( \cos A \). (3) b) Provide numerical verification by using THREE acute special angles (e.g., \( A=30^{\circ} \) ) and substitute into the equation formulated above in a). Show all your workings. c) What mathematical deduction can be made from b) above? (2) PART 3: Investigating tangent identity. Marks: 11 TASK 1: 1. Draw any right-angled triangle \( A B C \) with: (1) 2. Write down the definitions of the following trigonometric ratios using the triangle drawn: a) \( \sin A \) b) \( \cos A \) c) \( \quad \tan A \) 3. Express \( \frac{\sin A}{\cos A} \) using the definitions above, in terms of \( x \) and \( y \), and simplify to the simplest fractional form. 4. Compare the answer obtained above in question 3 and ratio obtain in 2.c). 5. Verify the validity of your answer in 4.) by calculations attaching values to Hypotenuse, Opposite and Adjacent. Please turn over Copyright reserved

Ask by Johnston Chang. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove \( \sin^2 A + \cos^2 A = 1 \), use the Pythagorean Theorem on the unit circle triangle \( \triangle AOP \) with coordinates \( (\cos A, \sin A) \). This gives \( \sin^2 A + \cos^2 A = 1 \). Numerical verification for \( 30^{\circ}, 45^{\circ}, 60^{\circ} \) confirms the identity holds. For the tangent identity, in a right-angled triangle, \( \tan A = \frac{\sin A}{\cos A} \), which matches the definition. Assigning values \( AC = 5 \), \( BC = 3 \), \( AB = 4 \) shows \( \tan A = \frac{3}{4} \), aligning with \( \frac{BC}{AB} \).

Solución

To rigorously prove the identity \( \sin^2 A + \cos^2 A = 1 \) using coordinate geometry and algebraic manipulation, we will follow the steps outlined in the problem. ### PART 2: #### TASK 1: **a)** Express \( \triangle \mathrm{AOP} \) as Pythagorean Theorem in terms of \( \sin A \) and \( \cos A \). In a right triangle \( \triangle AOP \), where: - \( O \) is the origin (0, 0), - \( A \) is the point on the x-axis (1, 0), - \( P \) is the point on the unit circle corresponding to angle \( A \) with coordinates \( (\cos A, \sin A) \). According to the Pythagorean Theorem, the relationship between the sides of the triangle is given by: \[ OP^2 = OA^2 + AP^2 \] Here: - \( OP \) is the hypotenuse (which is 1, since \( P \) lies on the unit circle), - \( OA \) is the adjacent side (which is \( \cos A \)), - \( AP \) is the opposite side (which is \( \sin A \)). Thus, we can write: \[ 1^2 = \cos^2 A + \sin^2 A \] This simplifies to: \[ \sin^2 A + \cos^2 A = 1 \] **b)** Provide numerical verification by using THREE acute special angles (e.g., \( A=30^{\circ} \)) and substitute into the equation formulated above in a). Let's verify the identity for three special angles: \( A = 30^{\circ}, 45^{\circ}, 60^{\circ} \). 1. For \( A = 30^{\circ} \): - \( \sin 30^{\circ} = \frac{1}{2} \) - \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) - Calculation: \[ \sin^2 30^{\circ} + \cos^2 30^{\circ} = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] 2. For \( A = 45^{\circ} \): - \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) - Calculation: \[ \sin^2 45^{\circ} + \cos^2 45^{\circ} = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} + \frac{2}{4} = 1 \] 3. For \( A = 60^{\circ} \): - \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) - \( \cos 60^{\circ} = \frac{1}{2} \) - Calculation: \[ \sin^2 60^{\circ} + \cos^2 60^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \] **c)** What mathematical deduction can be made from b) above? From the calculations above, we can deduce that for the angles \( 30^{\circ}, 45^{\circ}, \) and \( 60^{\circ} \), the identity \( \sin^2 A + \cos^2 A = 1 \) holds true. This confirms that the identity is valid for these acute angles, supporting its general applicability in trigonometry. ### PART 3: Investigating tangent identity. #### TASK 1: 1. Draw any right-angled triangle \( ABC \) with: - \( A \) as the angle of interest, - \( B \) as the right angle, - \( C \) as the opposite vertex. 2. Write down the definitions of the following trigonometric ratios using the triangle drawn: - a) \( \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{BC}{AC} \) - b) \( \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AB}{AC} \) - c) \( \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{BC}{AB} \) 3. Express \( \frac{\sin A}{\cos A} \) using the definitions above, in terms of \( x \) and \( y \), and simplify to the simplest fractional form. Using the definitions: \[ \frac{\sin A}{\cos A} = \frac{\frac{BC}{AC}}{\frac{AB}{AC}} = \frac{BC}{AB} = \tan A \] 4. Compare the answer obtained above in question 3 and the ratio obtained in 2.c). From question 3, we have \( \frac{\sin A}{\cos A} = \tan A \), which is consistent with the definition of tangent in question 2.c). 5. Verify the validity of your answer in 4.) by calculations attaching values to Hypotenuse, Opposite, and Adjacent. Let’s assign values: - Hypotenuse \( AC = 5 \) - Opposite \( BC = 3 \) - Adjacent \( AB = 4 \) Calculating: - \( \sin A = \frac{BC}{AC} = \frac{3}{5} \) - \( \cos A = \frac{AB}{AC} = \frac{4}{5} \) Now, calculate \( \tan A \): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] This matches the ratio \( \frac{BC}{AB} = \frac{3}{4} \), confirming the validity of the tangent identity. Thus, we have rigorously proven the identity \( \sin^2 A + \cos^2 A = 1 \) and verified the tangent identity through geometric and algebraic methods.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To investigate the identity \( \sin^2 A + \cos^2 A = 1 \) through coordinate geometry and algebraic manipulation, let's dive into each task step by step. ### PART 2 **Task 1(a)**: The right triangle \( \triangle AOP \) has sides represented as follows: if point \( P \) has coordinates \( (\cos A, \sin A) \), then: - The horizontal leg \( AO \) (the adjacent side) measures \( \cos A \). - The vertical leg \( OP \) (the opposite side) measures \( \sin A \). By the Pythagorean Theorem, we have: \[ AP^2 = AO^2 + OP^2 \] Substituting the lengths we get: \[ AP^2 = (\cos A)^2 + (\sin A)^2 \] Since \( AP \) represents the hypotenuse of the triangle, which is always of a length 1 (i.e., it's the radius when the angle is considered in a unit circle), we establish: \[ 1^2 = \cos^2 A + \sin^2 A \] **Task 1(b)**: Let's verify the identity using three acute angles: \( A = 30^{\circ}, 45^{\circ}, 60^{\circ} \) and substitute into our equation. - For \( A = 30^{\circ} \): \[ \sin 30^{\circ} = \frac{1}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2} \] \[ \sin^2 30^{\circ} + \cos^2 30^{\circ} = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] - For \( A = 45^{\circ} \): \[ \sin 45^{\circ} = \cos 45^{\circ} = \frac{\sqrt{2}}{2} \] \[ \sin^2 45^{\circ} + \cos^2 45^{\circ} = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} + \frac{2}{4} = 1 \] - For \( A = 60^{\circ} \): \[ \sin 60^{\circ} = \frac{\sqrt{3}}{2}, \quad \cos 60^{\circ} = \frac{1}{2} \] \[ \sin^2 60^{\circ} + \cos^2 60^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \] **Task 1(c)**: The numerical verification shows that for these specific angles, the identity \( \sin^2 A + \cos^2 A = 1 \) holds true consistently. This not only reinforces the validity of our equation but also highlights its fundamental role in trigonometry and the relationships between the properties of a right triangle. ### PART 3 **Task 1(2)**: Drawing a right triangle \( ABC \) where \( AD \) is perpendicular to \( BC \): - \( \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{BC}{AB} \) - \( \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AC}{AB} \) - \( \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{BC}{AC} \) **Task 1(3)**: Now, express \( \frac{\sin A}{\cos A} \): \[ \frac{\sin A}{\cos A} = \frac{BC/AB}{AC/AB} = \frac{BC}{AC} = \tan A \] **Task 1(4)**: Comparing this with the result from part 2.c), we see that \( \tan A = \frac{\sin A}{\cos A} \), confirming the definition from the geometry. **Task 1(5)**: To verify, let

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad