Pregunta
upstudy study bank question image url

Watch the video and then solve the problem given below. Click here to watch the video. Solve and graph the compound inequality. \( -4
Ask by Ball Burgess. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality –4 < x + 4 < 8 is –8 < x < 4. On the number line, this is represented by shading the region between –8 and 4, with open circles at –8 and 4 to indicate that these points are not included.

Solución

To solve the compound inequality   –4 < x + 4 < 8, follow these steps: Step 1: Subtract 4 from all three parts of the inequality to isolate x.   –4 – 4 < x + 4 – 4 < 8 – 4 Step 2: Simplify each part:   –8 < x < 4 So, the solution is x is greater than –8 and less than 4. In interval notation, this is written as (–8, 4). Graph on a Number Line:  1. Draw a horizontal number line and mark –8 and 4.  2. Place an open circle at –8 and another at 4 (indicating that –8 and 4 are not included).  3. Shade the line between –8 and 4. This represents all the values of x that satisfy –8 < x < 4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the compound inequality \( -4 < x + 4 < 8 \), we can break it into two parts and solve for \( x \). First, we subtract 4 from all parts of the inequality: 1. Starting with \( -4 < x + 4 \): \(-4 - 4 < x\) \(-8 < x\) or \( x > -8\) 2. Now the second part, \( x + 4 < 8 \): \(x < 8 - 4\) \(x < 4\) Combining these results, we get the final inequality: \(-8 < x < 4\) To graph this inequality, draw a number line and place open circles at -8 and 4 to indicate that these values are not included in the solution, shading the region between them. Now, if you have additional questions or need help with another problem, feel free to ask!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad