Pregunta
upstudy study bank question image url

A smooth sphere is projected along a horizontal plane and collides obliquely with a vertical wall. Just before impact, the sphere is moving with a speed of \( 10 \mathrm{~m} / \mathrm{s} \) at an angle of \( 60^{\circ} \) to the wall. If the coefficient of restitution between the sphere and the wall is \( \frac{1}{4} \), find the speed of the sphere after the impact and the angle, \( \alpha \), which its direction of motion then makes with the wall.

Ask by Martin Powers. in Cameroon
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After the collision, the sphere moves at a speed of \( \frac{35}{4} \) m/s (approximately 8.75 m/s) and makes an angle of \( \tan^{-1}(4\sqrt{3}) \) degrees (approximately 80.54°) with the wall.

Solución

To solve this problem, we need to analyze the motion of the sphere before and after the collision with the wall. ### Step 1: Break down the initial velocity The initial velocity \( \mathbf{v} \) of the sphere can be broken down into its components: - The horizontal component (perpendicular to the wall): \[ v_x = v \cos(\theta) = 10 \cos(60^\circ) = 10 \times \frac{1}{2} = 5 \, \text{m/s} \] - The vertical component (parallel to the wall): \[ v_y = v \sin(\theta) = 10 \sin(60^\circ) = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} \, \text{m/s} \] ### Step 2: Analyze the collision During the collision with the wall, the horizontal component of the velocity will change due to the coefficient of restitution \( e \). The vertical component will remain unchanged since there is no vertical force acting on the sphere. The coefficient of restitution is defined as: \[ e = \frac{\text{relative speed after collision}}{\text{relative speed before collision}} \] For our case: - The speed before collision in the horizontal direction is \( v_x = 5 \, \text{m/s} \). - The speed after collision in the horizontal direction will be \( v_x' = -e v_x \). Substituting the values: \[ v_x' = -\frac{1}{4} \times 5 = -\frac{5}{4} \, \text{m/s} \] The negative sign indicates that the sphere is moving in the opposite direction after the collision. ### Step 3: Determine the speed after the impact The vertical component remains unchanged: \[ v_y' = v_y = 5\sqrt{3} \, \text{m/s} \] Now, we can find the magnitude of the velocity after the impact: \[ v' = \sqrt{(v_x')^2 + (v_y')^2} = \sqrt{\left(-\frac{5}{4}\right)^2 + (5\sqrt{3})^2} \] Calculating this: \[ v' = \sqrt{\left(\frac{25}{16}\right) + (75)} = \sqrt{\frac{25}{16} + \frac{1200}{16}} = \sqrt{\frac{1225}{16}} = \frac{35}{4} \, \text{m/s} \] ### Step 4: Find the angle \( \alpha \) The angle \( \alpha \) that the direction of motion makes with the wall after the impact can be found using the tangent function: \[ \tan(\alpha) = \frac{v_y'}{|v_x'|} = \frac{5\sqrt{3}}{\frac{5}{4}} = 4\sqrt{3} \] Now, we can find \( \alpha \): \[ \alpha = \tan^{-1}(4\sqrt{3}) \] ### Final Results 1. The speed of the sphere after the impact is: \[ v' = \frac{35}{4} \, \text{m/s} \approx 8.75 \, \text{m/s} \] 2. The angle \( \alpha \) can be calculated using a calculator or trigonometric tables: \[ \alpha \approx \tan^{-1}(4\sqrt{3}) \approx 80.54^\circ \] Thus, the final answers are: - Speed after impact: \( \frac{35}{4} \, \text{m/s} \) - Angle \( \alpha \): \( \tan^{-1}(4\sqrt{3}) \) or approximately \( 80.54^\circ \) with respect to the wall.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we first need to analyze the components of the sphere's velocity before the impact and how they interact with the wall. ### Before Impact: The sphere's velocity \( v = 10 \, \text{m/s} \) can be resolved into two components: 1. **Parallel to the wall** (horizontal component): \( v_x = v \cdot \cos(60^\circ) = 10 \cdot \cos(60^\circ) = 10 \cdot 0.5 = 5 \, \text{m/s} \) 2. **Perpendicular to the wall** (vertical component): \( v_y = v \cdot \sin(60^\circ) = 10 \cdot \sin(60^\circ) = 10 \cdot \frac{\sqrt{3}}{2} \approx 8.66 \, \text{m/s} \) ### After Impact: According to the coefficient of restitution \( e = \frac{1}{4} \), the relationship between the velocities before and after the impact in the normal direction (perpendicular to the wall) can be expressed as: \[ e = \frac{\text{Relative speed after impact}}{\text{Relative speed before impact}} \] This tells us: \[ e = \frac{v_{y}' - 0}{0 - v_y} \implies v_{y}' = e \cdot v_y = \frac{1}{4} \cdot 8.66 \approx 2.165 \, \text{m/s} \] Note that this speed will be in the opposite direction, so \( v_{y}' \) will be negative after the impact. Thus, the vertical component of the velocity after the impact is \( -2.165 \, \text{m/s} \). The horizontal component \( v_x \) remains unchanged because the wall does not exert a force in that direction. ### Final Speed Calculation: After the impact, the magnitude of the total velocity can be calculated using the Pythagorean theorem: \[ v' = \sqrt{v_x^2 + v_y'^2} = \sqrt{(5)^2 + (-2.165)^2} = \sqrt{25 + 4.688} \approx \sqrt{29.688} \approx 5.45 \, \text{m/s} \] ### Angle with the Wall: The angle \( \alpha \) which the direction of motion makes with the wall can be found using the arctangent function: \[ \tan(\alpha) = \frac{|v_y'|}{v_x} = \frac{2.165}{5} \] \[ \alpha = \tan^{-1}\left(\frac{2.165}{5}\right) \approx 23.37^\circ \] ### Conclusion: The speed of the sphere after the impact is approximately \( 5.45 \, \text{m/s} \) and it makes an angle of about \( 23.37^\circ \) with the wall.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad