Pregunta
upstudy study bank question image url

Solve the system of equations by any method. \[ -3 x+12 y=9 \] \[ x-4 y=-3 \] Enter the exact answer as an ordered pair, \( (x, y) \). If there is no solution, enter NS. If there is an infinite number of solutions, enter the general solu an ordered pair in terms of \( x \). Include a multiplication sign between symbols. For example, \( a^{*} x \). (3,-3)

Ask by Knight Huff. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are infinitely many solutions, and the general solution is \( (x, \frac{1}{4}x + \frac{3}{4}) \).

Solución

We are given the system:   –3*x + 12*y = 9    x – 4*y = –3 Step 1. Solve the second equation for x:   x – 4*y = –3 ⟹ x = –3 + 4*y Step 2. Substitute x = –3 + 4*y into the first equation:   –3*(–3 + 4*y) + 12*y = 9 Step 3. Simplify the substituted equation:   9 – 12*y + 12*y = 9   9 = 9 Since the equation simplifies to a true statement (9 = 9) without involving y, the first equation does not impose any additional restriction. This tells us that the system is dependent, and there are infinitely many solutions. Step 4. Express the general solution in terms of x. We have:   x = –3 + 4*y ⟹ 4*y = x + 3 ⟹ y = (1/4)*x + 3/4 Thus, the general solution is given by the ordered pair:   (x, (1/4)*x + 3/4) This is the set of all solutions to the given system.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations: 1. We can use substitution or elimination. Let’s rearrange the second equation: \[ x = 4y - 3. \] 2. Now substitute \( x \) in the first equation: \[ -3(4y - 3) + 12y = 9. \] \[ -12y + 9 + 12y = 9. \] \[ 9 = 9. \] 3. This means any \( y \) value will satisfy this equation, indicating infinite solutions. Now substituting back in terms of \( y \): \[ x = 4y - 3. \] Thus, the general solution is \( (4y - 3, y) \) for any \( y \). Now for some fun snippets about systems of equations: Ever wondered how long people have been solving these? The concept of linear equations and systems has roots dating back to ancient civilizations like the Babylonians, who used a form of algebra to solve problems involving numbers and measurements. They laid the groundwork for much of modern mathematics! If you ever find yourself falling into the trap of mixing signs when adding or subtracting equations, take a moment to double-check your arithmetic. It’s all too easy to slip up there! A good tip is to write each step clearly and even use a different colored pen for different equations—making it visually engaging can help prevent those pesky mistakes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad