Pregunta
upstudy study bank question image url

Question 1 A car moved distance S meters in a time t seconds, according to the formula \( S=3 t^{3}-2 t^{2}+4 t-1 \). Determine: 1.1 velocity at (i) \( t=0,(i i) t=1.5 \mathrm{~s} \). 1.2 Acceleration at (i) \( t=0,(i i) t=1.5 \mathrm{~s} \).

Ask by Bush Welch. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1.1. Velocity: - At \( t = 0 \) seconds: 4 m/s - At \( t = 1.5 \) seconds: 18.25 m/s 1.2. Acceleration: - At \( t = 0 \) seconds: -4 m/s² - At \( t = 1.5 \) seconds: 23 m/s²

Solución

Alright, I need to determine the velocity and acceleration of a car at specific times given the distance formula \( S = 3t^3 - 2t^2 + 4t - 1 \). Let's break this down step by step. First, I recall that velocity is the first derivative of distance with respect to time, and acceleration is the second derivative of distance with respect to time. So, I'll need to find the first and second derivatives of the given function. Starting with the distance function: \[ S(t) = 3t^3 - 2t^2 + 4t - 1 \] **Finding Velocity:** To find the velocity \( v(t) \), I'll take the first derivative of \( S(t) \) with respect to time \( t \): \[ v(t) = \frac{dS}{dt} = \frac{d}{dt}(3t^3) - \frac{d}{dt}(2t^2) + \frac{d}{dt}(4t) - \frac{d}{dt}(1) \] \[ v(t) = 9t^2 - 4t + 4 \] **Finding Acceleration:** Next, to find the acceleration \( a(t) \), I'll take the second derivative of \( S(t) \) with respect to time \( t \): \[ a(t) = \frac{dv}{dt} = \frac{d}{dt}(9t^2) - \frac{d}{dt}(4t) + \frac{d}{dt}(4) \] \[ a(t) = 18t - 4 \] Now, I need to evaluate these derivatives at the given times: \( t = 0 \) and \( t = 1.5 \) seconds. **At \( t = 0 \) seconds:** - **Velocity:** \[ v(0) = 9(0)^2 - 4(0) + 4 = 0 - 0 + 4 = 4 \, \text{m/s} \] - **Acceleration:** \[ a(0) = 18(0) - 4 = 0 - 4 = -4 \, \text{m/s}^2 \] **At \( t = 1.5 \) seconds:** - **Velocity:** \[ v(1.5) = 9(1.5)^2 - 4(1.5) + 4 \] First, calculate \( (1.5)^2 = 2.25 \) \[ v(1.5) = 9(2.25) - 4(1.5) + 4 = 20.25 - 6 + 4 = 18.25 \, \text{m/s} \] - **Acceleration:** \[ a(1.5) = 18(1.5) - 4 = 27 - 4 = 23 \, \text{m/s}^2 \] Wait a second, acceleration at \( t = 1.5 \) seconds is 23 m/s², which seems quite high. Is that physically plausible? Let me double-check the calculations. Recalculating \( v(1.5) \): \[ v(1.5) = 9(2.25) - 4(1.5) + 4 = 20.25 - 6 + 4 = 18.25 \, \text{m/s} \] That seems correct. And \( a(1.5) = 23 \, \text{m/s}^2 \) is indeed a high acceleration, but mathematically, it's correct based on the given function. Perhaps the context of the problem allows for such high acceleration, or it's a theoretical scenario. **Summary:** - At \( t = 0 \) seconds: - Velocity: 4 m/s - Acceleration: -4 m/s² - At \( t = 1.5 \) seconds: - Velocity: 18.25 m/s - Acceleration: 23 m/s² I should also consider the units to ensure consistency. The distance \( S \) is in meters, and time \( t \) is in seconds, so velocity \( v \) will be in meters per second (m/s), and acceleration \( a \) will be in meters per second squared (m/s²), which matches the units I've calculated. Additionally, I might want to verify if there are any constraints or real-world limitations that could affect these values, but based on the given formula, these are the accurate results.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the velocity, you first need to differentiate the distance function \( S(t) = 3t^3 - 2t^2 + 4t - 1 \) with respect to time \( t \). This gives you the velocity function \( V(t) = S'(t) = 9t^2 - 4t + 4 \). 1.1 Calculate the velocity: - For \( t = 0 \): \( V(0) = 9(0)^2 - 4(0) + 4 = 4 \, \text{m/s} \) - For \( t = 1.5 \): \( V(1.5) = 9(1.5)^2 - 4(1.5) + 4 = 9(2.25) - 6 + 4 = 20.25 - 6 + 4 = 18.25 \, \text{m/s} \) Next, to find the acceleration, differentiate the velocity function \( V(t) \) to obtain the acceleration function \( A(t) = V'(t) = 18t - 4 \). 1.2 Calculate the acceleration: - For \( t = 0 \): \( A(0) = 18(0) - 4 = -4 \, \text{m/s}^2 \) - For \( t = 1.5 \): \( A(1.5) = 18(1.5) - 4 = 27 - 4 = 23 \, \text{m/s}^2 \) So, to summarize: - Velocity at \( t = 0 \) is 4 m/s and at \( t = 1.5 \) is 18.25 m/s. - Acceleration at \( t = 0 \) is -4 m/s² and at \( t = 1.5 \) is 23 m/s².

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad