Pregunta
upstudy study bank question image url

1.3 Pquations \[ \quad \begin{array}{l}\text { Question 11, 1.3.25 } \\ \text { Part } 1 \text { of } 2 \\ \text { A rectangular athletic field is twice as long as it is wide. If the perimeter of the athletic field is } 216 \text { yards, what are } \\ \text { The width is } \square \text { yards. }\end{array} \] To.5 of 15

Ask by Welch Ramirez. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The width of the field is 36 yards.

Solución

Let x represent the width of the field, in yards. Since the field is twice as long as it is wide, the length is 2x. The perimeter P of a rectangle is given by   P = 2(width + length) Substitute the expressions for width and length:   P = 2(x + 2x) = 2(3x) = 6x We are given that P = 216 yards, so:   6x = 216 Solve for x by dividing both sides by 6:   x = 216 ÷ 6 = 36 Thus, the width of the field is 36 yards.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the width of the rectangular athletic field, we can set up some equations based on the information given. Let's denote the width as \( w \) yards. Since the length is twice the width, we express the length as \( 2w \). The formula for the perimeter \( P \) of a rectangle is given by \( P = 2(\text{length} + \text{width}) \). In this case, we know the perimeter is 216 yards, so we can set up the equation: \[ 216 = 2(2w + w) \] \[ 216 = 2(3w) \] \[ 216 = 6w \] Dividing both sides by 6 gives us \( w = 36 \) yards. Now we can check our work. If the width is 36 yards, then the length is \( 2 \times 36 = 72 \) yards. The perimeter would be \( 2(72 + 36) = 216 \) yards, confirming our solution.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad