Pregunta
upstudy study bank question image url

The number of salmon swimming upstream to spawn is approximated by the following function, where \( x \) represents the temperature of the water in degrees Celsius. Find the water temperature that produces a local maximum number of salmon swimming upstream. \[ S(x)=-x^{3}+10.5 x^{2}+234 x+5197,4 \leq x \leq 20 \]

Ask by Savage Allan. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The water temperature that produces a local maximum number of salmon swimming upstream is 13 degrees Celsius.

Solución

To find the water temperature that produces a local maximum number of salmon swimming upstream, we need to find the critical points of the function \( S(x) = -x^{3} + 10.5x^{2} + 234x + 5197 \) within the given interval \( 4 \leq x \leq 20 \). Critical points are found by taking the derivative of the function and setting it equal to zero. The derivative of \( S(x) \) with respect to \( x \) is: \[ S'(x) = -3x^{2} + 21x + 234 \] Now, we need to solve the equation \( S'(x) = 0 \) to find the critical points. Let's solve the equation \( -3x^{2} + 21x + 234 = 0 \) to find the critical points. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(-3x^{2}+21x+234=0\) - step1: Factor the expression: \(-3\left(x-13\right)\left(x+6\right)=0\) - step2: Divide the terms: \(\left(x-13\right)\left(x+6\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x-13=0\\&x+6=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=13\\&x=-6\end{align}\) - step5: Rewrite: \(x_{1}=-6,x_{2}=13\) The critical points are \( x = -6 \) and \( x = 13 \). Since the given interval is \( 4 \leq x \leq 20 \), we only consider the critical point \( x = 13 \) within this interval. To determine if this critical point corresponds to a local maximum, we need to examine the behavior of the function around this point. We can do this by looking at the second derivative of the function, \( S''(x) \), and determining its sign at the critical point. The second derivative of \( S(x) \) is: \[ S''(x) = -6x + 21 \] Now, we need to evaluate \( S''(x) \) at \( x = 13 \) to determine the nature of the critical point. Calculate the value by following steps: - step0: Calculate: \(-6\times 13+21\) - step1: Multiply the numbers: \(-78+21\) - step2: Add the numbers: \(-57\) The second derivative at \( x = 13 \) is \( -57 \), which is negative. This indicates that the critical point \( x = 13 \) corresponds to a local maximum. Therefore, the water temperature that produces a local maximum number of salmon swimming upstream is \( x = 13 \) degrees Celsius.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the temperature that produces a local maximum number of salmon swimming upstream, you need to find the critical points of the function \( S(x) \). Start by taking the derivative \( S'(x) \) and setting it equal to zero: \[ S'(x) = -3x^2 + 21x + 234. \] Next, solve the equation \( -3x^2 + 21x + 234 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \] where \( a = -3 \), \( b = 21 \), and \( c = 234 \). Calculate the discriminant and find the roots to determine potential local maxima. Finally, test these critical points in the original function and check the endpoints \( x = 4 \) and \( x = 20 \) to see which gives the highest value of \( S(x) \). A local maximum gives salmon optimal conditions for spawning, which can vary by region. In habitats, water temperature affects oxygen levels and feeding habits, influencing salmon migration. Understanding these dynamics helps in conservation efforts and managing fish populations, ensuring sustainable ecosystems. Good luck with your calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad