Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Find the value of each of these investments at the end of the period specified below. (a) \( \$ 3500 \) invested at \( 5 \frac{2}{5} \% \) compounded annually for five years (b) \( \$ 6000 \) invested at \( 7 \% \) compounded semiannually for ten years

Ask by Fowler Gardner. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 5 years, the \$3500 investment grows to approximately \$4555.08. After 10 years, the \$6000 investment grows to approximately \$11,934.00.

Solución

We use the compound‐interest formula   A = P (1 + r)ⁿ where  P = the principal,  r = the interest rate per compounding period (expressed as a decimal), and  n = the total number of compounding periods. ────────────────────────────── Problem (a) Amount P = $3500 is invested at an annual rate of 5 2/5%. First, convert 5 2/5% into a decimal.  5 2/5% = 5 + 2/5 = 5 + 0.4 = 5.4% = 0.054. Since the compounding is annual and the time is 5 years, we have  n = 5 and r = 0.054. Thus, the amount at the end of 5 years is   A = 3500 × (1 + 0.054)⁵ = 3500 × (1.054)⁵. Using a calculator or successive multiplication:  (1.054)² ≈ 1.110916  (1.054)³ ≈ 1.171464  (1.054)⁴ ≈ 1.234691  (1.054)⁵ ≈ 1.301450 So,   A ≈ 3500 × 1.30145 ≈ 4555.08. Rounded to the nearest cent, the investment grows to about $4555.08. ────────────────────────────── Problem (b) Amount P = $6000 is invested at an annual rate of 7%, but compounded semiannually. With semiannual compounding: • Each period’s interest rate is r = 7%/2 = 0.07/2 = 0.035. • The number of compounding periods over 10 years is n = 10 × 2 = 20. Thus, the future value is   A = 6000 × (1 + 0.035)²⁰ = 6000 × (1.035)²⁰. To estimate (1.035)²⁰ we can either calculate directly or use logarithms. Using a calculator:  (1.035)²⁰ ≈ 1.989  (approximately) Then,   A ≈ 6000 × 1.989 ≈ 11934. So the investment is worth approximately $11,934 at the end of the 10‐year period. ────────────────────────────── Final Answers (a) Approximately $4555.08 (b) Approximately $11,934.00 These are the values of the investments after the specified time periods.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the future value of investments compounded annually and semiannually, you can use the formula: \[ F = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( F \) is the future value of the investment, - \( P \) is the principal (initial amount), - \( r \) is the annual interest rate (as a decimal), - \( n \) is the number of times the interest is compounded per year, - \( t \) is the number of years the money is invested. ### (a) Future value of $3500 invested at \( 5\frac{2}{5}\% \) or \( 5.4\% \) 1. Convert the interest rate to a decimal: \( 5\frac{2}{5}\% = \frac{27}{5} = 5.4\% = 0.054 \). 2. Principal \( P = 3500 \), \( r = 0.054 \), \( n = 1 \) (compounded annually), \( t = 5 \). Now plug in the values: \[ F = 3500 \left(1 + \frac{0.054}{1}\right)^{1 \times 5} \] \[ F = 3500 \left(1 + 0.054\right)^{5} = 3500 \times (1.054)^{5} \] Calculating \( (1.054)^{5} \approx 1.3005 \). Now, calculate: \[ F \approx 3500 \times 1.3005 \approx 4551.75 \] So, the future value of the investment after 5 years is approximately **$4551.75**. ### (b) Future value of $6000 invested at \( 7\% \) compounded semiannually 1. Convert the interest rate to a decimal: \( 7\% = 0.07 \). 2. Principal \( P = 6000 \), \( r = 0.07 \), \( n = 2 \) (compounded semiannually), \( t = 10 \). Now plug in the values: \[ F = 6000 \left(1 + \frac{0.07}{2}\right)^{2 \times 10} \] \[ F = 6000 \left(1 + 0.035\right)^{20} = 6000 \times (1.035)^{20} \] Calculating \( (1.035)^{20} \approx 1.8061 \). Now, calculate: \[ F \approx 6000 \times 1.8061 \approx 10836.60 \] So, the future value of the investment after 10 years is approximately **$10,836.60**.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad