Pregunta
upstudy study bank question image url

5. \( \frac{x^{2}-x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \)

Ask by Chan Washington. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified form of the expression is \( \frac{x - x^{2}}{x^{2} - 6x + 9} \).

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}-x\right)}{\left(x^{2}-2x-3\right)}\times \left(1-x^{2}\right)}{\left(x^{2}-4x+3\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}-x}{x^{2}-2x-3}\times \left(1-x^{2}\right)}{x^{2}-4x+3}\) - step2: Multiply the terms: \(\frac{\frac{\left(x^{2}-x\right)\left(1-x\right)}{x-3}}{x^{2}-4x+3}\) - step3: Multiply by the reciprocal: \(\frac{\left(x^{2}-x\right)\left(1-x\right)}{x-3}\times \frac{1}{x^{2}-4x+3}\) - step4: Rewrite the expression: \(\frac{x\left(x-1\right)\left(1-x\right)}{x-3}\times \frac{1}{\left(x-1\right)\left(x-3\right)}\) - step5: Reduce the fraction: \(\frac{x\left(1-x\right)}{x-3}\times \frac{1}{x-3}\) - step6: Multiply the terms: \(\frac{x\left(1-x\right)}{\left(x-3\right)\left(x-3\right)}\) - step7: Multiply the terms: \(\frac{x\left(1-x\right)}{\left(x-3\right)^{2}}\) - step8: Multiply the terms: \(\frac{x-x^{2}}{x^{2}-6x+9}\) To solve the expression \[ \frac{x^{2}-x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}}, \] we can rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}-x}{x^{2}-2x-3} \times \frac{1-x^{2}}{x^{2}-4x+3}. \] Now, let's simplify each part step by step. 1. **Factor the expressions:** - \(x^2 - x = x(x - 1)\) - \(x^2 - 2x - 3 = (x - 3)(x + 1)\) - \(1 - x^2 = -(x^2 - 1) = -(x - 1)(x + 1)\) - \(x^2 - 4x + 3 = (x - 3)(x - 1)\) 2. **Substituting the factored forms into the expression:** \[ \frac{x(x - 1)}{(x - 3)(x + 1)} \times \frac{-(x - 1)(x + 1)}{(x - 3)(x - 1)}. \] 3. **Combine the fractions:** \[ \frac{x(x - 1)(-(x - 1)(x + 1))}{(x - 3)(x + 1)(x - 3)(x - 1)}. \] 4. **Cancel out common factors:** - The \((x - 1)\) in the numerator and denominator cancels out. - The \((x + 1)\) in the numerator and denominator cancels out. After canceling, we are left with: \[ \frac{-x(x - 1)}{(x - 3)(x - 3)} = \frac{-x(x - 1)}{(x - 3)^2}. \] Thus, the simplified form of the original expression is: \[ \frac{x - x^{2}}{x^{2} - 6x + 9}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify \( \frac{x^{2}-x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \), we first rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}-x}{x^{2}-2 x-3} \cdot \frac{1-x^{2}}{x^{2}-4 x+3} \] Next, we'll factor each polynomial: 1. **Numerator of the first fraction**: \( x^{2}-x = x(x-1) \) 2. **Denominator of the first fraction**: \( x^{2}-2x-3 = (x-3)(x+1) \) 3. **Numerator of the second fraction (reciprocal)**: \( 1-x^{2} = -(x^{2}-1) = -(x-1)(x+1) \) 4. **Denominator of the second fraction**: \( x^{2}-4x+3 = (x-3)(x-1) \) Now substituting the factored forms into our expression: \[ \frac{x(x-1)}{(x-3)(x+1)} \cdot \frac{-(x-1)(x+1)}{(x-3)(x-1)} \] Now, we can simplify: Cancel \( (x-1) \) in the numerator and denominator: \[ = \frac{x \cdot -1 \cdot (x+1)}{(x-3)(x+1)(x-3)} \] Now we can cancel \( (x+1) \): \[ = \frac{-x}{(x-3)(x-3)} \] Thus, we finalize our simplification to: \[ \frac{-x}{(x-3)^{2}}, \quad x \neq 3, -1, \text{and } 1 \] Now, the final result is: \[ \frac{-x}{(x-3)^2} \] where \( x \) cannot be \( 3 \), \( 1 \), or \(-1\).

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad