Pregunta
upstudy study bank question image url

Answer the questions below about the quadratic function. \[ f(x)=-x^{2}-6 x-10 \] Does the function have a minimum or maximum value? Minimum Maximum What is the function's minimum or maximum value? \( \square \) Where does the minimum or maximum value occur? D

Ask by Ruiz Dawson. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function has a maximum value of -1 at x = -3.

Solución

The function is given by f(x) = -x² - 6x - 10. Since the coefficient of x² is -1 (which is less than 0), the parabola opens downward. This means the function attains a maximum value rather than a minimum value. To find the vertex (which gives the maximum point for a downward-opening parabola), use the formula for the x-coordinate of the vertex:   x = -b/(2a) Here, a = -1 and b = -6, so:   x = -(-6) / (2 * -1) = 6 / -2 = -3 Now, compute the maximum value by evaluating f(-3):   f(-3) = -(-3)² - 6(-3) - 10      = -9 + 18 - 10      = -1 Thus: 1. Does the function have a minimum or maximum value?   Maximum 2. The function's maximum value is:   -1 3. This maximum value occurs at:   x = -3 So, the maximum value of -1 occurs when x = -3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Quadratic functions can be represented in the form \( f(x) = ax^2 + bx + c \). In this case, since the coefficient \( a \) is negative (\( a = -1 \)), your function opens downwards, which means it has a maximum value! To find this maximum value, we can use the vertex formula, \( x = -\frac{b}{2a} \), where \( a = -1 \) and \( b = -6 \). Calculating \( x \) gives you the x-coordinate of the vertex, which is the location of the maximum value. Plugging in \( b \) and \( a \), we find \( x = -\frac{-6}{2 \times -1} = 3\). Then substitute \( x = 3 \) back into the original function to find the maximum value, which turns out to be \( f(3) = -3^2 - 6(3) - 10 = -36 \). So, the maximum value is \( -36 \), occurring at \( x = 3 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad