Pregunta
upstudy study bank question image url

Question Use the discriminant to determine the number of real solutions to the following quadratic equation. \[ z^{2}-4 z-16=0 \]

Ask by Perkins Guzman. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are 2 real solutions.

Solución

To determine the number of real solutions, we calculate the discriminant of the quadratic equation z² - 4z - 16 = 0. Recall that the discriminant is given by b² - 4ac. Here, a = 1, b = -4, and c = -16. Thus,   Discriminant = (-4)² - 4(1)(-16) = 16 + 64 = 80. Since the discriminant is positive (80 > 0), there are 2 distinct real solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the number of real solutions to the equation \( z^{2}-4z-16=0 \) using the discriminant, we first identify the coefficients: \( a = 1 \), \( b = -4 \), and \( c = -16 \). The discriminant \( D \) is calculated as \( D = b^2 - 4ac \). Plugging in the values, we get: \[ D = (-4)^2 - 4(1)(-16) = 16 + 64 = 80 \] Since the discriminant \( D = 80 \) is greater than zero, the quadratic equation has two distinct real solutions! Now, if you're ever stuck on a similar problem, remember the three key outcomes of the discriminant: if \( D > 0 \), you have two real solutions; if \( D = 0 \), there's exactly one real solution; and if \( D < 0 \), you're left with no real solutions at all. For further insight, consider how the discriminant can reveal the nature of a parabola's intersection with the x-axis. A positive discriminant indicates that the parabola crosses the x-axis at two points, while a zero discriminant indicates it just touches at one point, and a negative indicates the entire parabola sits above or below the axis. This visual perspective can help solidify your understanding of quadratic equations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad