Pregunta
upstudy study bank question image url

4. Mr. Corwin gave his students \( \frac{3}{4} \) hour to study for a test. After \( \frac{1}{3} \) hour, he played a review game for the remaining time. How much time did Mr. Corwin spend playing the review game?

Ask by Horton Guerrero. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Mr. Corwin spent \( \frac{5}{12} \) hour playing the review game.

Solución

Let's denote the total time Mr. Corwin gave his students to study for the test as \( t \) hours. Given that Mr. Corwin gave his students \( \frac{3}{4} \) hour to study for the test, we can set up the equation: \[ t = \frac{3}{4} \] After \( \frac{1}{3} \) hour, Mr. Corwin played a review game for the remaining time. The time spent playing the review game can be calculated as: \[ \text{Time spent playing review game} = t - \frac{1}{3} \] Substitute the value of \( t \) into the equation: \[ \text{Time spent playing review game} = \frac{3}{4} - \frac{1}{3} \] Now, let's calculate the time spent playing the review game. Calculate the value by following steps: - step0: Calculate: \(\frac{3}{4}-\frac{1}{3}\) - step1: Reduce fractions to a common denominator: \(\frac{3\times 3}{4\times 3}-\frac{4}{3\times 4}\) - step2: Multiply the numbers: \(\frac{3\times 3}{12}-\frac{4}{3\times 4}\) - step3: Multiply the numbers: \(\frac{3\times 3}{12}-\frac{4}{12}\) - step4: Transform the expression: \(\frac{3\times 3-4}{12}\) - step5: Multiply the numbers: \(\frac{9-4}{12}\) - step6: Subtract the numbers: \(\frac{5}{12}\) Mr. Corwin spent \( \frac{5}{12} \) hour playing the review game.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much time Mr. Corwin spent playing the review game, we first need to calculate the remaining time after the students studied for \( \frac{1}{3} \) hour out of the \( \frac{3}{4} \) hour they were given. 1. Convert \( \frac{3}{4} \) hour into a common fraction form with \( \frac{1}{3} \): - To subtract \( \frac{1}{3} \) hour from \( \frac{3}{4} \) hour, find a common denominator. The least common multiple of 4 and 3 is 12. - Convert \( \frac{3}{4} \) to a denominator of 12: \( \frac{3}{4} = \frac{9}{12} \). - Convert \( \frac{1}{3} \) to a denominator of 12: \( \frac{1}{3} = \frac{4}{12} \). 2. Now, subtract these fractions: \[ \frac{9}{12} - \frac{4}{12} = \frac{5}{12} \] Therefore, Mr. Corwin spent \( \frac{5}{12} \) hour playing the review game.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad