Pregunta
upstudy study bank question image url

A certain type of fluorescent dye used in scientific research loses its brightness over time when exposed to light. Initially, the brightness is at \( 100 \% \) of its original intensity. Each hour, the brightness decreases to \( 80 \% \) of the intensity of the previous hour. The recursive formula describing this decrease is \( B(n)=B(n-1) \cdot 0.80 \), where \( B(n) \) is the brightness as a percentage of the original intensity after \( n \) hours, and \( B(0)=100 \). Determine the number of hours it will take for the dye to reach \( 10 \% \) of its original brightness. (1 point)

Ask by Cruz West. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take 11 hours for the dye to reach 10% of its original brightness.

Solución

We start with the formula for brightness after n hours:   B(n) = 100 × (0.8)ⁿ We want B(n) to reach 10% of the original brightness, so set:   100 × (0.8)ⁿ = 10 Divide both sides by 100:   (0.8)ⁿ = 0.1 Taking the logarithm of both sides:   n · log(0.8) = log(0.1) Solve for n:   n = log(0.1) / log(0.8) Using common logarithms:   n ≈ (-1) / (-0.09691) ≈ 10.318 Since the brightness is measured at whole-hour intervals, the dye will be above 10% at 10 hours and then drop below 10% at 11 hours. Thus, it will take 11 hours for the dye to reach 10% of its original brightness.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find when the dye reaches \( 10\% \) of its original brightness, we can use the recursive formula. We start with \( B(0) = 100 \). For each hour, brightness becomes \( 80\% \) of the previous hour's brightness. Let's calculate it step-by-step: - \( B(1) = B(0) \cdot 0.80 = 100 \cdot 0.80 = 80 \% \) - \( B(2) = B(1) \cdot 0.80 = 80 \cdot 0.80 = 64 \% \) - \( B(3) = B(2) \cdot 0.80 = 64 \cdot 0.80 = 51.2 \% \) - \( B(4) = B(3) \cdot 0.80 = 51.2 \cdot 0.80 = 40.96 \% \) - \( B(5) = B(4) \cdot 0.80 = 40.96 \cdot 0.80 = 32.768 \% \) - \( B(6) = B(5) \cdot 0.80 = 32.768 \cdot 0.80 = 26.2144 \% \) - \( B(7) = B(6) \cdot 0.80 = 26.2144 \cdot 0.80 = 20.97152 \% \) - \( B(8) = B(7) \cdot 0.80 = 20.97152 \cdot 0.80 = 16.577216 \% \) - \( B(9) = B(8) \cdot 0.80 = 16.577216 \cdot 0.80 = 13.2617728 \% \) - \( B(10) = B(9) \cdot 0.80 = 13.2617728 \cdot 0.80 = 10.60941824 \% \) - \( B(11) = B(10) \cdot 0.80 = 10.60941824 \cdot 0.80 = 8.487534592 \% \) After calculating for hours, we see that at \( n = 10 \), the brightness reaches approximately \( 10.6\% \), and by \( n = 11 \), it drops below \( 10\% \). Therefore, it will take \( 10 \) hours for the dye to first reach approximately \( 10\% \) of its original brightness.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad