Graph all vertical and horizontal asymptotes of the rational function. \[ f(x)=\frac{4 x-13}{-2 x+9} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the vertical asymptotes of the function \( f(x)=\frac{4 x-13}{-2 x+9} \), set the denominator equal to zero: \(-2x + 9 = 0\) Solving for \( x \) gives: \[ -2x = -9 \implies x = \frac{9}{2} \] Thus, there is a vertical asymptote at \( x = \frac{9}{2} \). Next, to determine the horizontal asymptote, look at the degrees of the numerator and denominator. Both \( 4x-13 \) and \(-2x+9\) are linear (degree 1), so we take the ratio of the leading coefficients. The leading coefficient of the numerator is 4, and the leading coefficient of the denominator is -2. Therefore, the horizontal asymptote is: \[ y = \frac{4}{-2} = -2 \] In summary: - Vertical asymptote at \( x = \frac{9}{2} \) - Horizontal asymptote at \( y = -2 \)
