If \( \sin 40^{\circ}=p \), write EACH of the following in terms of \( p \). \( 5.1 .1 \quad \sin 220^{\circ} \) \( 5.1 .2<\cos ^{2} 50^{\circ} \) 5040
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \( \sin 220^{\circ} \) in terms of \( p \), we can use the identity \( \sin(180^{\circ} + \theta) = -\sin(\theta) \). Since \( 220^{\circ} = 180^{\circ} + 40^{\circ} \), we have: \[ \sin 220^{\circ} = \sin(180^{\circ} + 40^{\circ}) = -\sin 40^{\circ} = -p. \] Now, for \( \cos^{2} 50^{\circ} \), we can apply the complementary angle identity. We know \( \sin(90^{\circ} - x) = \cos x \). Thus: \[ \cos 50^{\circ} = \sin(90^{\circ} - 50^{\circ}) = \sin 40^{\circ} = p. \] Therefore, \[ \cos^{2} 50^{\circ} = \sin^{2} 40^{\circ} = p^{2}. \] Summing it up, we find: 1. \( \sin 220^{\circ} = -p \) 2. \( \cos^{2} 50^{\circ} = p^{2} \)
