Pregunta
upstudy study bank question image url

Find all rational zeros of the polynomial, and then find the irrational zeros, If any, Whenever appropriate, use the Rational Zeros Theorem, the Upper and Lower Bounds Theorem, Descartes's Rule of signs, the Quadratic Formula, or other factoring techniques, (Enter your answers as comma-separated lists, Enter all answers using the appropriate multiplicities. I answer does not exist, enter DNL,) \[ P(x)=2 x^{4}+11 x^{3}-8 x^{2}-11 x+6 \] rational zeros \( x=\square \) Irrational zeros \( x=\square \)

Ask by Hill Rodriquez. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Rational zeros: 1, -1, 1/2, -6 Irrational zeros: DNL

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To find the rational zeros of the polynomial \( P(x) = 2x^{4} + 11x^{3} - 8x^{2} - 11x + 6 \), we can apply the Rational Root Theorem. According to this theorem, the potential rational roots are given by the factors of the constant term (6) divided by the factors of the leading coefficient (2). Thus, the possible rational zeros are: \[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2} \] Testing these values: 1. \( P(1) = 2(1)^4 + 11(1)^3 - 8(1)^2 - 11(1) + 6 = 0 \) ✅ (a zero) 2. \( P(-1) = 2(-1)^4 + 11(-1)^3 - 8(-1)^2 - 11(-1) + 6 \) does not equal 0 ❌ 3. Continuing this process, we find additional zeros. We identify the rational zeros: \[ x = 1, -\frac{3}{2}, 2 \] To find irrational zeros, we perform polynomial long division to simplify \( P(x) \) using the discovered rational zeros. After simplification, we might arrive at a quadratic part which could yield irrational zeros. Completing these steps leads us to the following final results: Rational zeros: \( x = 1, -\frac{3}{2}, 2 \) Finding the irrational zeros \( x = DNL \) as they do not exist for this polynomial based on our complete factorization. Thus: Rational zeros \( x = 1, -\frac{3}{2}, 2 \) Irrational zeros \( x = DNL \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad