Pregunta
A sequence is defined by the recursive rule \( f(1)=-4 \) \( f(n)=f(n-1)+5 \) What is the seventh term of the sequence? 7 26 8
Ask by Rose Chavez. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The seventh term of the sequence is 26.
Solución
We're given f(1) = -4 and the recursive rule f(n) = f(n-1) + 5. This means each term is 5 more than the previous term.
Let's calculate step by step:
• f(1) = -4
• f(2) = f(1) + 5 = -4 + 5 = 1
• f(3) = f(2) + 5 = 1 + 5 = 6
• f(4) = f(3) + 5 = 6 + 5 = 11
• f(5) = f(4) + 5 = 11 + 5 = 16
• f(6) = f(5) + 5 = 16 + 5 = 21
• f(7) = f(6) + 5 = 21 + 5 = 26
Thus, the seventh term of the sequence is 26.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the seventh term of the sequence, let's start with the given information. We know that \( f(1) = -4 \) and each subsequent term increases by 5. So, we can calculate the first few terms: - \( f(1) = -4 \) - \( f(2) = f(1) + 5 = -4 + 5 = 1 \) - \( f(3) = f(2) + 5 = 1 + 5 = 6 \) - \( f(4) = f(3) + 5 = 6 + 5 = 11 \) - \( f(5) = f(4) + 5 = 11 + 5 = 16 \) - \( f(6) = f(5) + 5 = 16 + 5 = 21 \) - \( f(7) = f(6) + 5 = 21 + 5 = 26 \) So, the seventh term of the sequence is 26.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium