Waterfall Company sells a product for \( \$ 150 \) per unit. The variable cost is \( \$ 80 \) per unit, and fixed costs are \( \$ 270,000 \). Determine the (a) break-even point in sales units and (b) the sales (units) necessary if the company desires a target profit of \( \$ 36,000 \). Round answers to the nearest whole number. a. Break-even point in sales units b. Break-even points in sales units if the company desires a target profit of \( \$ 36,000 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To determine the break-even point in sales units, you need to calculate how many units need to be sold to cover both variable and fixed costs. **a. Break-even point in sales units:** The break-even point (BEP) can be calculated using the formula: \[ BEP = \frac{\text{Fixed Costs}}{\text{Selling Price per Unit} - \text{Variable Cost per Unit}} \] Substituting the known values: \[ BEP = \frac{270,000}{150 - 80} = \frac{270,000}{70} \approx 3,857.14 \] Rounding to the nearest whole number gives a break-even point of **3,857 units**. **b. Sales (units) necessary for a target profit of $36,000:** To find the sales needed for a target profit, you can expand the break-even formula to include the target profit: \[ Sales = \frac{\text{Fixed Costs} + \text{Target Profit}}{\text{Selling Price per Unit} - \text{Variable Cost per Unit}} \] Substituting the values: \[ Sales = \frac{270,000 + 36,000}{150 - 80} = \frac{306,000}{70} \approx 4,371.43 \] Rounding to the nearest whole number means the company needs to sell **4,371 units** to achieve a target profit of $36,000.
