Identify \( f(x) \) and \( u=g(x) \) such that \( F(x)=f(u)=f(g(x)) \) for the function \( F(x)=(7 x-8.2)^{3} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To identify \( f(x) \) and \( g(x) \) such that \( F(x) = f(u) = f(g(x)) \) for \( F(x) = (7x - 8.2)^3 \), we can proceed as follows: First, let's define \( g(x) \) as the inner function of \( F(x) \). We can choose: \[ g(x) = 7x - 8.2 \] Next, we can define \( f(u) \) such that it is a function of \( u \) (in this case \( u = g(x) \)). Since \( F(x) \) takes the form \( (g(x))^3 \), we set: \[ f(u) = u^3 \] Now we have: - \( g(x) = 7x - 8.2 \) - \( f(u) = u^3 \) Thus, \( F(x) = f(g(x)) \) can be expressed as: \[ F(x) = f(7x - 8.2) = (7x - 8.2)^3 \] And that completes the identification of the functions!
