Pregunta
upstudy study bank question image url

Which of the following expressions is equivalent to \( 12 x=3+2 x+19 ? \) Select all that apply \( \square \) A. \( 10 x+16 \) \( \square \) B. \( 14 x+10 \) \( \square \) C. \( 2(7 x+5) \) \( \square \) D. \( 14 x+16 \) \( \square \) E. \( 17 x+13 \)

Ask by Vega Reeves. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

None of the options A, B, C, D, or E are equivalent to the expression \( 12x = 3 + 2x + 19 \).

Solución

To determine which expressions are equivalent to \( 12x = 3 + 2x + 19 \), we first need to simplify the given equation. 1. **Combine like terms on the right side:** \[ 3 + 19 = 22 \] So, the equation becomes: \[ 12x = 2x + 22 \] 2. **Isolate \( x \) by moving \( 2x \) to the left side:** \[ 12x - 2x = 22 \] This simplifies to: \[ 10x = 22 \] 3. **Now, we can express this equation in different forms to compare with the options given.** - Dividing both sides by 2: \[ 5x = 11 \] - Rearranging gives: \[ 10x - 22 = 0 \] Next, we will check each option to see if they can be simplified to match \( 10x = 22 \). ### Checking the options: **A. \( 10x + 16 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **B. \( 14x + 10 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **C. \( 2(7x + 5) \)** Expanding this gives: \[ 2(7x + 5) = 14x + 10 \] This does not equal \( 10x - 22 \). **D. \( 14x + 16 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). **E. \( 17x + 13 \)** This expression does not equal \( 0 \) when set to \( 10x - 22 \). ### Conclusion: None of the options provided are equivalent to the expression \( 12x = 3 + 2x + 19 \). Therefore, the answer is that none of the options (A, B, C, D, E) are correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( 12 x=3+2 x+19 \), we first simplify the right side: 1. Combine like terms on the right: \( 3 + 19 = 22 \), so the equation becomes: \( 12 x = 2 x + 22 \). 2. Next, we isolate \( x \) by subtracting \( 2 x \) from both sides: \( 12 x - 2 x = 22 \), which simplifies to: \( 10 x = 22 \). Now that we know \( 10 x = 22 \), let's compare this with the options given: - A. \( 10 x + 16 \): This actually becomes \( 22 + 16 = 38\) when \( 10 x = 22 \). - B. \( 14 x + 10 \): If we substitute \( x \) from \( x = \frac{22}{10} = 2.2 \), it doesn't match. - C. \( 2(7 x + 5) \): Substituting \( x = 2.2 \) gives \( 2(7(2.2) + 5) = 2(15.4 + 5) = 2(20.4) = 40.8\), which isn't equivalent. - D. \( 14 x + 16 \): Similarly, this doesn't prove equivalent since it leads to a different sum. - E. \( 17 x + 13 \): Testing this would yield no matching terms. After checking all options, none of them are equivalent as \( 10 x = 22 \).

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad