Pregunta
upstudy study bank question image url

Find the amount of interest (in \( \$ \) ) on a loan of \( \$ 6,000 \), at \( 5 \% \) interest, for 60 days using the exact interest method. (Round your answer to the nearest cent.) \( \$ \) Need Help? Read it Watch it Master lt SUBMIT ANSWER

Ask by Franklin Vaughn. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interest is approximately \$49.32.

Solución

To find the amount of interest on a loan using the exact interest method, we can use the formula: \[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \] Given: - Principal = $6,000 - Rate = 5% = 0.05 - Time = 60 days Substitute the values into the formula: \[ \text{Interest} = \$6,000 \times 0.05 \times \frac{60}{365} \] Now, we can calculate the interest. Calculate the value by following steps: - step0: Calculate: \(\frac{6000\times 0.05\times 60}{365}\) - step1: Multiply the terms: \(\frac{18000}{365}\) - step2: Reduce the fraction: \(\frac{3600}{73}\) The amount of interest on a loan of $6,000 at 5% interest for 60 days using the exact interest method is approximately $49.32.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the interest on a loan using the exact interest method, you can use the formula: \[ I = P \times r \times t \] where: - \( I \) is the interest, - \( P \) is the principal amount (in this case, \( \$ 6,000 \)), - \( r \) is the annual interest rate (as a decimal, so \( 5\% = 0.05 \)), - \( t \) is the time in years (60 days is \( \frac{60}{365} \)). Plugging in the values: \[ I = 6000 \times 0.05 \times \frac{60}{365} \] Calculating this: \[ I = 6000 \times 0.05 \times 0.164384 \approx 49.315 \] Rounding to the nearest cent, the interest amounts to \( \$ 49.32 \). --- Did you know that the use of the exact interest method allows for more accurate calculations over shorter periods? This method accounts for the actual number of days in the year (365 days) rather than using a simplified method such as a 360-day year! For anyone looking to dive deeper into the world of interest calculations, consider checking out "The Mathematics of Money" by financial educator Charles H. Carver. It offers great insights into practical applications, including the various methods of calculating interest effectively!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad