Pregunta
upstudy study bank question image url

Write the domain in interval notation. (a) \( k(x)=\frac{x+6}{x-2} \) (b) \( j(x)=\frac{x+6}{x^{2}+2} \) (c) \( p(x)=\frac{x+6}{x^{2}-2} \)

Ask by Fitzgerald Knight. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Domain: (-∞, 2) ∪ (2, ∞) (b) Domain: (-∞, ∞) (c) Domain: (-∞, -√2) ∪ (-√2, √2) ∪ (√2, ∞)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

For the function \( k(x)=\frac{x+6}{x-2} \), the domain is all real numbers except where the denominator is zero. Thus, \( x-2 \neq 0 \) which gives us \( x \neq 2 \). In interval notation, the domain is \( (-\infty, 2) \cup (2, \infty) \). For the function \( j(x)=\frac{x+6}{x^{2}+2} \), the denominator \( x^2 + 2 \) is never zero for any real number, since \( x^2 \) is always non-negative and adding 2 keeps it positive. Therefore, the domain in interval notation is \( (-\infty, \infty) \). For the function \( p(x)=\frac{x+6}{x^{2}-2} \), the denominator needs to be considered, \( x^2 - 2 \neq 0 \). This gives us \( x^2 \neq 2 \) or \( x \neq \pm \sqrt{2} \). Thus, the domain in interval notation is \( (-\infty, -\sqrt{2}) \cup (-\sqrt{2}, \sqrt{2}) \cup (\sqrt{2}, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad