Pregunta
EXERCISE 9 Determine the value of \( x \) and \( y \) which satisfy the following systems of linear cquations: \( \begin{array}{lll}\text { (a) } x-y=2 \text { and } 2 x+y=10 & \text { (b) } y-3 x=-2 \text { and } 7 x-2 y=8 \\ \text { (c) } 3 x+5 y=8 \text { and } x-2 y=-1 & \text { (d) } 7 x-3 y=41 \text { and } 3 x-y=17\end{array} \)
Ask by Weber Schwartz. in South Africa
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Here are the solutions for each system of equations:
- **(a)** \( x = 4 \), \( y = 2 \)
- **(b)** \( x = 4 \), \( y = 10 \)
- **(c)** \( x = 1 \), \( y = 1 \)
- **(d)** \( x = 5 \), \( y = -2 \)
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x+5y=8\\x-2y=-1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}3x+5y=8\\x=-1+2y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(3\left(-1+2y\right)+5y=8\)
- step3: Simplify:
\(-3+11y=8\)
- step4: Move the constant to the right side:
\(11y=8+3\)
- step5: Add the numbers:
\(11y=11\)
- step6: Divide both sides:
\(\frac{11y}{11}=\frac{11}{11}\)
- step7: Divide the numbers:
\(y=1\)
- step8: Substitute the value of \(y:\)
\(x=-1+2\times 1\)
- step9: Substitute back:
\(x=-1+2\)
- step10: Calculate:
\(x=1\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(1,1\right)\)
Solve the system of equations \( y-3 x=-2;7 x-2 y=8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-3x=-2\\7x-2y=8\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-2+3x\\7x-2y=8\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(7x-2\left(-2+3x\right)=8\)
- step3: Simplify:
\(x+4=8\)
- step4: Move the constant to the right side:
\(x=8-4\)
- step5: Subtract the numbers:
\(x=4\)
- step6: Substitute the value of \(x:\)
\(y=-2+3\times 4\)
- step7: Calculate:
\(y=10\)
- step8: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=10\end{array}\right.\)
- step9: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=10\end{array}\right.\)
- step10: Rewrite:
\(\left(x,y\right) = \left(4,10\right)\)
Solve the system of equations \( 7 x-3 y=41;3 x-y=17 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}7x-3y=41\\3x-y=17\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}7x-3y=41\\y=-17+3x\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(7x-3\left(-17+3x\right)=41\)
- step3: Simplify:
\(-2x+51=41\)
- step4: Move the constant to the right side:
\(-2x=41-51\)
- step5: Subtract the numbers:
\(-2x=-10\)
- step6: Change the signs:
\(2x=10\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{10}{2}\)
- step8: Divide the numbers:
\(x=5\)
- step9: Substitute the value of \(x:\)
\(y=-17+3\times 5\)
- step10: Calculate:
\(y=-2\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=5\\y=-2\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=5\\y=-2\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(5,-2\right)\)
Solve the system of equations \( x-y=2;2 x+y=10 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x-y=2\\2x+y=10\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=2+y\\2x+y=10\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\left(2+y\right)+y=10\)
- step3: Simplify:
\(4+3y=10\)
- step4: Move the constant to the right side:
\(3y=10-4\)
- step5: Subtract the numbers:
\(3y=6\)
- step6: Divide both sides:
\(\frac{3y}{3}=\frac{6}{3}\)
- step7: Divide the numbers:
\(y=2\)
- step8: Substitute the value of \(y:\)
\(x=2+2\)
- step9: Calculate:
\(x=4\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=2\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=2\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(4,2\right)\)
Here are the solutions for each system of linear equations:
### (a)
Equations:
1. \( x - y = 2 \)
2. \( 2x + y = 10 \)
**Solution:**
\[
(x, y) = (4, 2)
\]
### (b)
Equations:
1. \( y - 3x = -2 \)
2. \( 7x - 2y = 8 \)
**Solution:**
\[
(x, y) = (4, 10)
\]
### (c)
Equations:
1. \( 3x + 5y = 8 \)
2. \( x - 2y = -1 \)
**Solution:**
\[
(x, y) = (1, 1)
\]
### (d)
Equations:
1. \( 7x - 3y = 41 \)
2. \( 3x - y = 17 \)
**Solution:**
\[
(x, y) = (5, -2)
\]
These values of \( x \) and \( y \) satisfy their respective systems of equations.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg



¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium