Pregunta
upstudy study bank question image url

uestion 3 [Multiples and Factors] Three numbers are given below. Use prime factorisation to determine the HCF and LCM.

Ask by Crawford Klein. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the HCF and LCM of three numbers using prime factorization, first list the prime factors of each number, then identify the common factors for HCF and take the highest powers for LCM. Please provide the three numbers to proceed.

Solución

To determine the Highest Common Factor (HCF) and Lowest Common Multiple (LCM) of three numbers using prime factorization, we need to follow these steps: 1. **Identify the three numbers**: Please provide the three numbers for which you want to find the HCF and LCM. 2. **Prime Factorization**: Break down each number into its prime factors. 3. **Determine HCF**: The HCF is found by taking the product of the lowest powers of all prime factors common to the numbers. 4. **Determine LCM**: The LCM is found by taking the product of the highest powers of all prime factors present in any of the numbers. Once you provide the three numbers, I can proceed with the calculations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the HCF and LCM using prime factorization, start by breaking each number down into its prime factors. For example, let's say the numbers are 12, 18, and 30. - 12 = 2² × 3¹ - 18 = 2¹ × 3² - 30 = 2¹ × 3¹ × 5¹ Now, for the HCF, take the lowest power of each prime factor present in all three numbers. So, HCF = 2¹ × 3¹ = 6. For the LCM, take the highest power of each prime factor present in at least one of the numbers. Thus, LCM = 2² × 3² × 5¹ = 180. Voila! You've found both the HCF and LCM! Keep practicing with different numbers to master this skill! Foundations of prime factorization can be traced back to ancient Greeks, particularly Euclid, who introduced systematic ways to find the greatest common divisor. His contributions laid the groundwork for number theory, and today, the methods developed during his time continue to be essential in various branches of mathematics, influencing everything from cryptography to algorithm design. In real-world applications, the concepts of HCF and LCM play a vital role in resource allocation and time management. For instance, in organizing events or scheduling classes, finding the LCM can help determine the optimal timing for recurring activities. Meanwhile, HCF often comes into play in simplifying shared resources, whether it's splitting a pizza evenly among friends or calculating the best way to distribute supplies in a project for efficiency.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad