4) \( \begin{array}{l}-3 x-3 y=3 \\ y=-5 x-17\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve this system of equations, you can use substitution or elimination. Let's use substitution. From the second equation \( y = -5x - 17 \), substitute this expression for \( y \) into the first equation: \(-3x - 3(-5x - 17) = 3\). This simplifies to \(-3x + 15x + 51 = 3\), which further simplifies to \(12x + 51 = 3\). Now, isolate \(x\): \(12x = 3 - 51\) or \(12x = -48\), giving us \(x = -4\). Now plug \(x = -4\) back into \(y = -5(-4) - 17\) to find \(y\): \(y = 20 - 17 = 3\). So, the solution is \(x = -4\) and \(y = 3\). To visualize this, you can graph these lines on a coordinate plane! The point where they intersect, in this case at \((-4, 3)\), reveals the solution to the system of equations. It's quite like finding treasure on a map!
