Solve for \( y \). \( \frac{6}{y-5}+\frac{y}{y-3}=\frac{24}{y^{2}-8 y+15} \) If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \( \frac{6}{y-5}+\frac{y}{y-3}=\frac{24}{y^{2}-8y+15} \), we first notice that the denominator on the right side can be factored. The quadratic \( y^{2}-8y+15 \) factors to \( (y-5)(y-3) \). This allows us to rewrite the equation as follows: \[ \frac{6}{y-5}+\frac{y}{y-3}=\frac{24}{(y-5)(y-3)}. \] Next, we can get a common denominator for the left side of the equation, which is \( (y-5)(y-3) \): \[ \frac{6(y-3)}{(y-5)(y-3)} + \frac{y(y-5)}{(y-5)(y-3)} = \frac{24}{(y-5)(y-3)}. \] Combining the fractions on the left gives us: \[ \frac{6(y-3) + y(y-5)}{(y-5)(y-3)} = \frac{24}{(y-5)(y-3)}. \] Now, cross-multiplying leads to: \[ 6(y-3) + y(y-5) = 24. \] Expanding both sides: \[ 6y - 18 + y^2 - 5y = 24. \] Combining like terms results in: \[ y^2 + y - 18 = 24. \] Moving all terms to one side gives: \[ y^2 + y - 42 = 0. \] Next, we factor this quadratic: \[ (y - 6)(y + 7) = 0. \] Thus, the solutions for \( y \) are: \[ y - 6 = 0 \quad \Rightarrow \quad y = 6, \] \[ y + 7 = 0 \quad \Rightarrow \quad y = -7. \] Now, let's check if the potential solutions \( y=6 \) and \( y=-7 \) don't make any denominators zero. For \( y-5 \) and \( y-3 \): - For \( y=6 \): \( 6-5=1 \neq 0\) and \( 6-3=3 \neq 0\). - For \( y=-7 \): \( -7-5=-12 \neq 0\) and \( -7-3=-10 \neq 0\). Both values are valid solutions since they don't cause any denominator to be zero. Thus, the final solutions are: \[ \boxed{6, -7}. \]
