If \( \$ 26,000 \) is invested in an account for 20 years. Calculate the total interest earned at the end of 20 years if the interest is: (a) \( 8 \% \) simple interest: \( \$ \) (b) \( 8 \% \) compounded annually: \( \$ \) (c) \( 8 \% \) compounded quarterly: \( \$ \) (d) \( 8 \% \) compounded monthly: \( \$ \) Round your answers to the nearest cent. Question Help: Message instructor
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To calculate the total interest earned over 20 years for each scenario, we can apply the respective formulas for simple interest and compound interest. For simple interest: \[ \text{Interest} = P \times r \times t \] where \( P \) is the principal amount (\$26,000), \( r \) is the rate (0.08), and \( t \) is the time (20 years). (a) \[ \text{Interest} = 26000 \times 0.08 \times 20 = \$41,600 \] For compound interest, the formula is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where \( n \) is the number of times interest is compounded per year. (b) Compounded annually (\( n = 1 \)): \[ A = 26000 \left(1 + \frac{0.08}{1}\right)^{1 \times 20} = 26000 \times (1.08)^{20} \approx 26000 \times 4.6604 \approx \$121,173.16 \] Thus, the interest earned is: \[ \$121,173.16 - \$26,000 = \$95,173.16 \] (c) Compounded quarterly (\( n = 4 \)): \[ A = 26000 \left(1 + \frac{0.08}{4}\right)^{4 \times 20} = 26000 \left(1 + 0.02\right)^{80} = 26000 \times (1.02)^{80} \approx 26000 \times 4.6666 \approx \$121,333.91 \] The interest earned is: \[ \$121,333.91 - \$26,000 = \$95,333.91 \] (d) Compounded monthly (\( n = 12 \)): \[ A = 26000 \left(1 + \frac{0.08}{12}\right)^{12 \times 20} = 26000 \left(1 + \frac{0.08}{12}\right)^{240} = 26000 \times (1.00666667)^{240} \approx 26000 \times 4.6847 \approx \$121,753.80 \] Thus, the interest earned is: \[ \$121,753.80 - \$26,000 = \$95,753.80 \] So, rounding to the nearest cent, we have: (a) Simple Interest: \( \$41,600.00 \) (b) Compounded Annually: \( \$95,173.16 \) (c) Compounded Quarterly: \( \$95,333.91 \) (d) Compounded Monthly: \( \$95,753.80 \)
