The inequality \( -\frac{9}{4} \leq x \) in interval notation is \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
The inequality \( -\frac{9}{4} \leq x \) means that \( x \) can take any value greater than or equal to \( -\frac{9}{4} \). In interval notation, we express this as \( \left[-\frac{9}{4}, \infty\right) \). Here, the square bracket indicates that \( -\frac{9}{4} \) is included in the set of solutions. When working with inequalities, it's easy to make mistakes like forgetting to include the endpoint or misreading the direction of the inequality sign. A common tip is to always double-check the signs and ensure you’re using brackets or parentheses correctly. Remember, brackets denote inclusion while parentheses exclude the endpoint!
