Pregunta
Which expression is equivalent to \( \frac{2^{-3}}{2^{-5}} \) ? (A) \( 2^{2} \) (B) \( \frac{1}{2^{2}} \) (C) \( 2^{8} \) (D) \( \frac{1}{2^{8}} \)
Ask by Ellis Hall. in the United Kingdom
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression \( \frac{2^{-3}}{2^{-5}} \) is equivalent to \( 2^{2} \).
Solución
Calculate or simplify the expression \( \frac{2^{-3}}{2^{-5}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2^{-3}}{2^{-5}}\)
- step1: Multiply by \(a^{-n}:\)
\(2^{-3}\times 2^{5}\)
- step2: Multiply:
\(2^{-3+5}\)
- step3: Add the numbers:
\(2^{2}\)
- step4: Evaluate the power:
\(4\)
The expression \( \frac{2^{-3}}{2^{-5}} \) is equivalent to \( 4 \).
Therefore, the correct answer is (A) \( 2^{2} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To simplify the expression \( \frac{2^{-3}}{2^{-5}} \), you can use the property of exponents that states \( \frac{a^m}{a^n} = a^{m-n} \). So, we have: \[ \frac{2^{-3}}{2^{-5}} = 2^{-3 - (-5)} = 2^{-3 + 5} = 2^{2}. \] Thus, the expression is equivalent to \( 2^{2} \), which corresponds to option (A).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium