Pregunta
upstudy study bank question image url

Which equation or inequality is true? (C) \( 3-\sqrt{9}>1 \) (D) \( \sqrt{\frac{1}{4}}>\frac{\sqrt{2}}{4} \) 17 The volume of a cube-shaped box is 216 cubic inches: What is the length of each side of the cube in inches? \( \qquad \) 8. Write the number \( 6.1 \overline{7} \) as a mixed number in simplest form. \( \qquad \) 9 Estimate the value of \( \sqrt{84} \) to the nearest tenth. \( \qquad \) 10 Solve the equation \( n^{3}=\frac{27}{343} \) for \( n \).

Ask by Howell Reed. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. (D) is true. 2. Each side of the cube is 6 inches. 3. 6.1̅7 is equal to 6 8/45. 4. √84 is approximately 9.2. 5. n = 3/7.

Solución

Below are the step‐by‐step solutions for each part. ────────────────────────────── 1. Which equation or inequality is true? We are given two options:  (C) 3 – √9 > 1  (D) √(1/4) > (√2)/4 Check (C):  √9 = 3, so 3 – 3 = 0. Since 0 is not greater than 1, (C) is false. Check (D):  √(1/4) = 1/2 = 0.5.  (√2)/4 is approximately 1.414/4 ≈ 0.3535. Since 0.5 > 0.3535, (D) is true. Answer for part 1: (D) is true. ────────────────────────────── 2. The volume of a cube-shaped box is 216 cubic inches. What is the length of each side? For a cube, volume = (side length)³. Therefore, if s³ = 216, then  s = ∛216 = 6 inches. ────────────────────────────── 3. Write the number 6.1̅7 as a mixed number in simplest form. Here, 6.1̅7 means 6.17777… where only the 7 repeats. Step 1. Separate the whole number from the decimal:  6.1̅7 = 6 + 0.1̅7 Step 2. Convert the repeating decimal 0.1̅7 to a fraction. Let x = 0.1̅7. Since there is one non‐repeating digit (the “1”) and one repeating digit (“7”), we use the formula:  x = (all digits after the decimal – non‐repeating part) / (10^(number of non‐repeating digits) × (10^(number of repeating digits) – 1)) Here, “all digits” (both nonrepeating and one cycle of repeating) form 17, and the nonrepeating part is 1. Thus:  x = (17 – 1) / (10 × (10 – 1)) = 16 / (10 × 9) = 16/90. Simplify 16/90 by dividing numerator and denominator by 2:  16/90 = 8/45. Thus, 6.1̅7 = 6 + 8/45 = 6 8/45. ────────────────────────────── 4. Estimate the value of √84 to the nearest tenth. We know that:  √81 = 9 and √100 = 10. Since 84 is a little more than 81, √84 is a bit more than 9. A more precise estimation:  √84 ≈ 9.166, which rounds to 9.2 when rounded to the nearest tenth. ────────────────────────────── 5. Solve the equation n³ = 27/343. Take the cube root of both sides:  n = ∛(27/343) = (∛27)/(∛343) = 3/7 (since ∛27 = 3 and ∛343 = 7). ────────────────────────────── Final Answers: 1. (D) √(1/4) > (√2)/4 is true. 2. The side length is 6 inches. 3. 6.1̅7 = 6 8/45. 4. √84 ≈ 9.2. 5. n = 3/7.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

For the first part, let's have some fun with these inequalities! The expression \(3 - \sqrt{9}\) simplifies to \(3 - 3\), which equals 0. That makes the first inequality false since 0 is not greater than 1. On the other hand, \(\sqrt{\frac{1}{4}} = \frac{1}{2}\), while \(\frac{\sqrt{2}}{4} \approx 0.353\), so \(0.5\) is indeed greater than \(0.353\). Thus, the second statement is true! Now, on to the cube! To find the side length, take the cube root of the volume. Since \(216 = 6^3\), the side length of the cube-shaped box is \(6\) inches. Keep that tape measure handy! For the mixed number, we convert \(6.1\overline{7}\) into a fraction. The whole number is \(6\), and the decimal .1 can be expressed as \(\frac{1}{10}\). Now, to deal with the repeating part, let’s convert \(0.\overline{7}\) into a fraction, which gives us \(\frac{7}{90}\). Summing these up, the mixed number in simplest form is \(\mathbf{6 \frac{1}{10} + \frac{7}{90} = 6 \frac{1}{9}}\). Estimation time for \(\sqrt{84}\)! We know the perfect squares near 84 are \(81\) (where \(\sqrt{81} = 9\)) and \(100\) (where \(\sqrt{100} = 10\)). A quick estimate based on this gives us a value close to \(9.2\) when you calculate it out—sneaky and simple! Lastly, for solving \(n^{3}=\frac{27}{343}\), let's break it down! Rewrite \(27\) as \(3^3\) and \(343\) as \(7^3\), leading to \(n^{3}=\left(\frac{3}{7}\right)^{3}\). Taking the cube root gives us \(n=\frac{3}{7}\). How smooth was that?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad